Production of Bio-based Fuels and Chemicals Using Novel Process Platforms

Kartik Chandran

Columbia University

Andlinger Center for Energy and the Environment

Princeton University

February 16th, 2015

The quest for clean water- today

Is it possible to link sanitation with higher value chain biofuels and commodity chemicals?

Engineered Resource Recovery from 'Waste' Streams

Possible flowsheet for C, N and P recovery

Recovery of C, N and P

All based on anaerobic technologies

Biofuels

Commercial chemicals

Bioplastics

Biofertilizers

Fecal sludge to biodiesel

Biodiesel

Lipids

Lipids in fecal sludge

Biodiesel process agnostic to 'waste' stream?

Anaerobic Digestion

Complex organic polymers

Hydrolysis

Sugars, amino acids

Acidogenesis

Volatile fatty acids (VFA)

Acetogenesis

Acetic acid

Methanogenesis

Methane

HRT > 10 d

Anaerobic Fermentation Complex organic polymers Hydrolysis Sugars, amino acids Acidogenesis VFA Acetogenesis Acetic acid $HRT \sim 2 d$

- Fermentation is more advantageous than just anaerobic digestion
- Fermentation can be incorporated into existing digestion processes

Overview of our process

Organic waste

Anaerobic fermentation to produce volatile fatty acids (VFA)

Convert VFA to lipids

Harvest and extract lipids

Convert lipids to biodiesel

Conversion of VFA to Lipids

- Different COD sources
 - VFA from food waste fermentation
 - Synthetic VFA
 - Glucose
- Different initial VFA concentrations

6:1:3 acetate, propionate, butyrate. 2 day HRT

- Different feedstock composition
 - Excess N: COD:N = 5:1
 - Limiting N: COD:N = 25:1, 50:1, 125:1, 250:1

Lipid content
of
Cryptococcus
albidus

Batch process

Chemostat

Effect of feedstock composition

	COD:	μ _m (h ⁻¹)
	5:1	0.041
80	25:1	0.043
iting	50:1	0.039
imi	125:1	0.036
H	250:1	0.023

Process can handle variability in influent feedstock

EFFECT OF NITROGEN CONCENTRATION ON YIELD COEFFICIENTS

Cultures become more efficient in carbon uptake and storage (as lipids) with increasing N-limitation

Vajpeyi and Chandran, 2015 BRT

METABOLIC EFFECT OF NITROGEN CONCENTRATION

Lipid Composition

Major fatty acids accumulated are palmitic (C16:0), oleic (C18:1), and linoleic acid (C18:2)

Similar to soybean oil and jatropha oil, predominant feedstocks for biodiesel production in the US and the EU

Economic analysis

Cost of biodiesel production

Carbon source cost	\$30/ton			
	(Much lower if sludge comes in pre-fermented, as in Kumasi, GH)			
Lipid yield from <i>C. albidus</i>	40.96			
(kg lipid/ton VFA)	(lowest observed value during our studies)			
Lipid cost (\$/lb)	0.33			
Gross cost (\$/L biodiesel)	0.71			
Gross cost (\$/Kg biodiesel)	0.81			

Not competing with biodiesel industry, rather making sanitation enterprise energy neutral or energy positive

Conclusions and implications

Novel and flexible platform to convert a variety of organic 'waste' streams to biodiesel or other lipid based commodity chemicals

Not reliant upon inherent lipid content- other organic classes can be converted to lipids

- For biodiesel as the preferred end point, reliance upon agricultural outputs is reduced or eliminated
- Links sanitation practice with energy and chemical recovery
- Mechanistic interrogation underway using a systems approach

Production of bio-methanol by ammonia oxidizing bacteria

Applications of methanol

VOLVO:s DME-powered Truck

Baytshtok et al., 2008, 2009, Lu et al., 2010, 2011, 2012

Sources of methanol

Biological production of methanol

	Type I methanotroph	Type II methanotroph	
Phylogeny	Gamma proteobacteria	Alpha-proteobacteria	
CH4 oxidation and carbon assimilation	Ribulose mono-phosphate	Serine	
Monooxygenase	рММО	sMMO	

Biological production of methanol

	Type I methanotroph	Type II methanotroph	Ammonia oxidizing bacteria
Phylogeny	Gamma proteobacteria	Alpha-proteobacteria	Beta-proteobacteria
CH4 oxidation and carbon assimilation	Ribulose mono- phosphate	Serine	Fortuitous, no assimilation known
Monooxygenase	рММО	sMMO	AMO

Ammonia and Methane Oxidation

MMO NAD< CH₃OH **MDH HCHO** → Assimilation NAD~ **FIDH NADH HCOOH** CO₂ **FDH** NAD **NADH**

CH_₄

NADH

Murrell and Holmes, 1996; Semrau et al., 1995 Chandran and Smets, 2008, Taher and Chandran, 2015 Yu *et al.*, 2010a,b, Khunjar *et al.*, 2015

- Concomitant oxidation of CH₄ and CO₂ fixation
 - Digester gas contains CO₂
 - Foulant for chemical catalyst; but a food source for AOB
 - Moisture- not really an issue
- Prospect of combining C &N cycles

Objectives

• Develop ammonia oxidation bioreactors for partial oxidation of methane to methanol

- Optimize conditions for partial oxidation to CH₃OH
- Optimize operation and design to maximize yields

Preliminary experiments

 Exposing nitrifying activated sludge to different amounts of methane and oxygen

		t=0 h				t=5 h	
	Biomass mgCOD/L	NH3 (mgN/L)	$ m NH_2OH \ (mgN/L)$	CH4 (mg/L)	O_2 (mg/L)	NH3 (mgN/L)	CH3OH mgCOD/L
Ex1	1352.6	100	0	7.67	26.67	94.58	O
Ex2	1352.6	100	0	11.5	20	96.24	0
Ex3	1352.6	100	0	13.8	16	97.2	0
		t=0 h				t=5 h	
	Biomass mgCOD/L	NH3 (mgN/L)	$ m NH_2OH \ (mgN/L)$	CH4 (mg/L)	O_2 (mg/L)	NH3 (mgN/L)	$ m CH_3OH$ $ m mgCOD/L$
Ex4	1268.4	98.6	1.4	7.67	26.67	93.2	0
Ex5	1268.4	98.6	1.4	11.5	20	95.15	1.49
Ex6	1268.4	98.6	1.4	13.8	16	96.03	2.3

Preliminary experiments

 Continuous sparging methane (30 ml/min) and oxygen (20 ml/min)

Ammonia and Methane Oxidation

MMO NAD< CH₃OH **MDH HCHO** → Assimilation NAD~ **FIDH NADH HCOOH** CO₂ **FDH** NAD **NADH**

CH_₄

NADH

Murrell and Holmes, 1996; Semrau et al., 1995 Chandran and Smets, 2008, Taher and Chandran, 2015 Yu *et al.*, 2010a,b, Khunjar *et al.*, 2015

Improved design

- Issue: competitive inhibition of CH₄ and NH₃ oxidation
 - Rationale: NH₃ needed to activate AMO
 - Solution: isolate NH₃ and CH₄ oxidation
 - Maintain low or zero NH₃ concentrations in solution
- Issue: Limitation of reducing power from NH₃
 - Solution: Create conditions to create electron imbalance
 - OR Supply reductant
 - OR Internally produce reductant
 - Same solution as above BUT
 - Keep NOB in solution

Experimental Design/Setup

Maintenance Energy:

$$m_G = 4.5 \exp\left[\frac{-69000}{R} \left(\frac{1}{T} - \frac{1}{298}\right)\right]$$

 $@T = 298^K \ m_G = 4.5 \frac{KJ}{c - mol X.H}$

Tijhuiset al. (1993)

• Catabolic reaction:

$$NH_3 + 1.5O_2 \xrightarrow{G^{catabolic} = 274.75 \frac{KJ}{molN}} NO_2^- + 2H^+$$

$$m_{NH3} = 0.0072 \frac{mgN}{mgCOD.h}$$

Cumulative CH₃OH production

• Switching between NH₃ and NH₂OH supply gave the highest CH₃OH yield

Rate of CH₃OH production

Maximum CH ₃ OH production rate mg CH ₃ OH COD mg biomass COD-d	Peak CH ₃ OH concentration (mg COD/L)	Microbial system used	Reference	
0.21	23.47 ± 0.50	Mixed nitrifying cultures NH ₃ only feed (FS1)		
0.30	27.50 ± 0.78	Mixed nitrifying cultures NH ₂ OH only feed (FS2)		
0.22	Mixed nitrifying cultures NH $_3$ and NH $_2$ OH co-feed (FS3) Mixed nitrifying cultures NH $_3$ and Mixed nitrifying cultures NH $_3$ and NH $_2$ OH alternating feed (FS4)		Taher and Chandran, 2013	
0.20				
0.82	59.89 ± 1.12	Mixed nitrifying cultures NH ₂ OH only feed with biomass replenishment (high rate)		
0.37	28.8	Pure suspended cultures of Nitrosomonas europaea	Hyman and Wood, 1983	
0.31-0.54	NA	Pure suspended cultures of <i>N</i> . <i>europaea</i>	Hyman et al.,, 1988	
0.02-0.1	6.2 ± 4.9	Pure immobilized cultures of N. europaea	Thorn, 2007	

Summary

- Proof of concept developed in batch and continuous mode for converting CH₄ to CH₃OH using AOB
- Next
 - Understand the system wide impact of CH₄ exposure and conversion in AOB
 - Leverage the results of the Paul Busch research to implement process at wastewater treatment plants
 - Accelerate path towards process engineering and optimization

Water-Energy-Food-Cities

Discussion

Kartik Chandran

Associate Professor

Director, Wastewater Treatment and

Climate Change Program

Director, CUBES Program

Email: kc2288@columbia.edu

Phone: (212) 854 9027

URL: www.columbia.edu/~kc2288

