

Modeling Electricity Markets & Policy with Optimization: Why It's Important (and Fun!)

Princeton University, 10 Feb. 2014

Benjamin F. Hobbs

Schad Professor of Environmental Management, DoGEE Director, Environment, Energy, Sustainability & Health Institute (E²SHI) The Johns Hopkins University

Chair, Market Surveillance Committee, California ISO

Thanks to:

Harry van der Weijde (Free U. Amsterdam, Cambridge University)
Francisco Munoz, Saamrat Kasina, & Jonathan Ho (JHU),
Jim Bushnell (UCDavis), Frank Wolak (Stanford)
and NSF, DOE-CERTS, UK EPSRC, CAISO for funding

Outline

- I. Why is power fun?
 Ubiquitous uncertainty
- II. Why is power modeling fun?
- III. Fun with simple models

 Who should limit their CO₂ emissions:
 generators or consumers?
- IV. Fun with complex models

 Dealing with uncertainty:

 Where & when to build transmission?
- V. Conclusions

I. Why is the Power Sector Fun?

http://cdn.themetapicture.com/media/funny-cat-static-electricity.jpg

JHU E²SHI

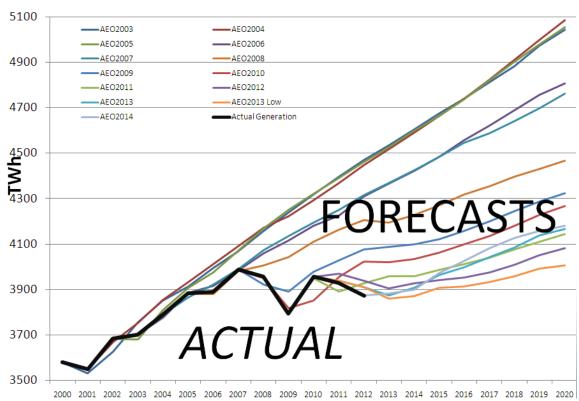
I. Why is the Power Sector Fun?

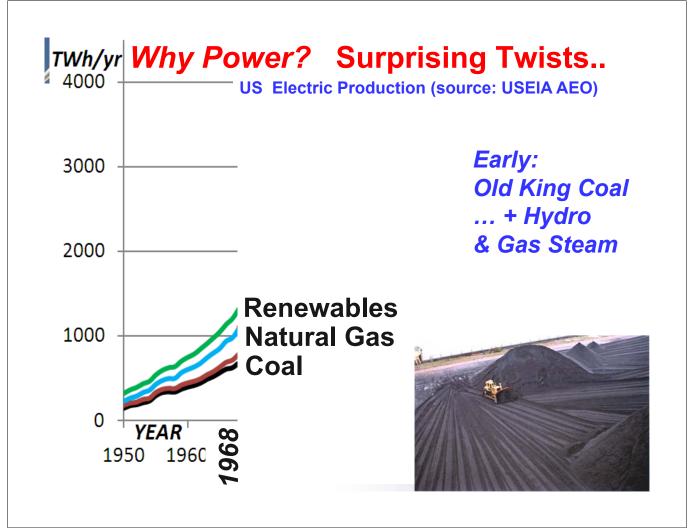
- **■**Unique physics
- **■**Economy's lynchpin
- Environmental impacts
 - ... and potential
- ■Ongoing restructuring
- **■**Dumb grids
- **■**Surprises

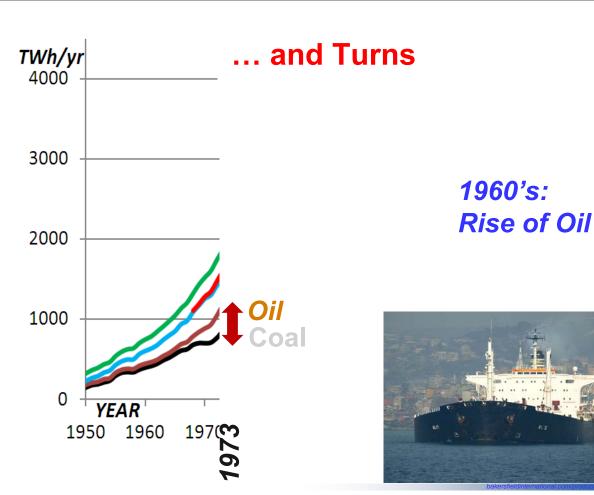
1

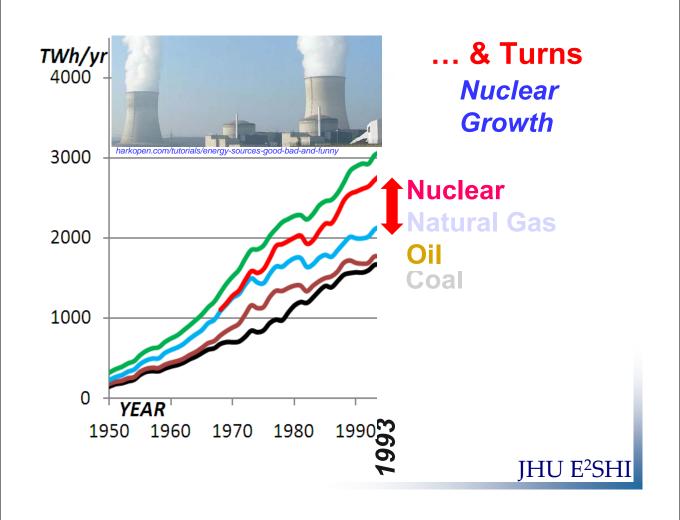
Why Power? Surprises

Figure 1 Projections of total U.S. primary energy use from the 1970s. The figure is redrawn from a Department of Energy report (3) and simplified from a summary of dozens of forecasts.

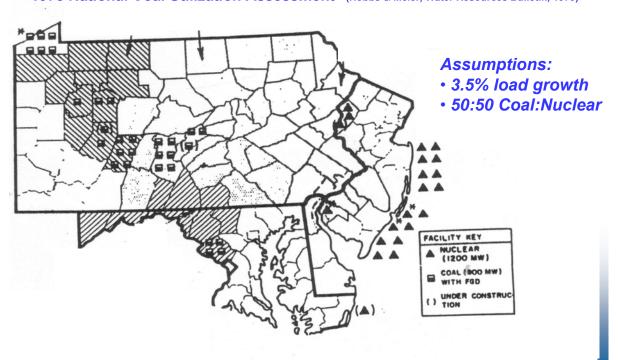

Source: P.P. Craig, A. Gadgil, and J.G. Koomey, "What Can History Teach Us? A Retrospective Examination of Long-Term Energy Forecasts for the United States," Annual Review of Energy and the Environment, 27: 83-118

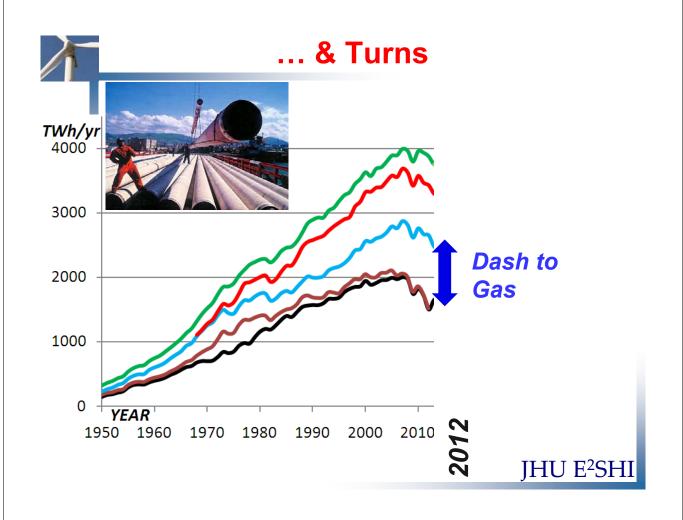

JHU E²SHI

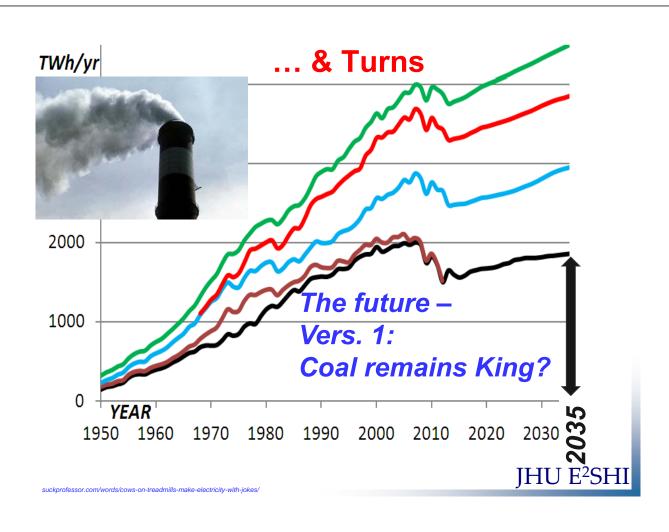


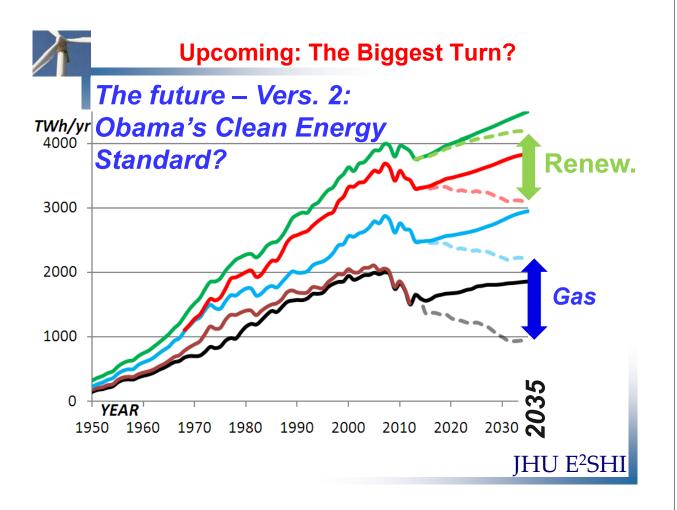

....& More Demand Surprises

USDOE Annual Energy Outlook Projection - Electricity Generation






Mea Culpa – a 1979 Forecast


MidAtlantic1985-2000 Power Plant Siting Scenario

1978 National Coal Utilization Assessment (Hobbs & Meier, Water Resources Bulletin, 1979)

Yet More Surprises: Wind

IEA World Energy Outlook (2000):

- 3% of global energy will be non-hydro renewable by 2020
 - -Reached in 2008
- 30 GW world wind by 2010
 - -Actually: 200 GW
 - 40 GW in US (DOE(1999) predicted 10 GW)
 - 45 GW in China (IEA said 2 GW)

JHU E²SHI

Upshot of surprises

- Is modeling useless?
- Nieubuhr's Serenity Prayer

IHU E²SHI

II. Why is power modeling fun?

- Math & computing challenges
- Counterintuitive economic behavior
- Lots of data
- Lots at stake!
 - Done wrong →hurt economy & environment
 - Done right, → an efficient & cleaner future

JHU E²SHI

Definition of Electric Power Models

- Models that:
 - optimize or simulate ...
 - · operations & design of ...
 - production, transport, & use of power ...
 - · & its economic, environmental, & other impacts ...
 - using math & computers
- Focus here: "bottom up" engineering-economic models
 - Technical & behavioral components
 - Used by:
 - Companies
 - max profits
 - Policy analysts
 - simulate market's reaction to policy

Elements of Eng-Econ Models

- Decision variables
- Objective(s)
- Constraints

JHU E²SHI

Example: Operations Optimization

MW output generator *i* during period *t*

MIN Variable Cost = $\Sigma_{i,t} C_{it} g_{it}$

Subject to:

Meet demand: $\Sigma_i g_{i,t} = D_t \forall t$ Dual $\lambda_t = marginal price$ Respect plant limits:

 $0 \le g_{i,t} \le CAPACITY_i \quad \forall i,t$

D and CAPACITY also can be decisions

All Models are Wrong ... Some are Useful

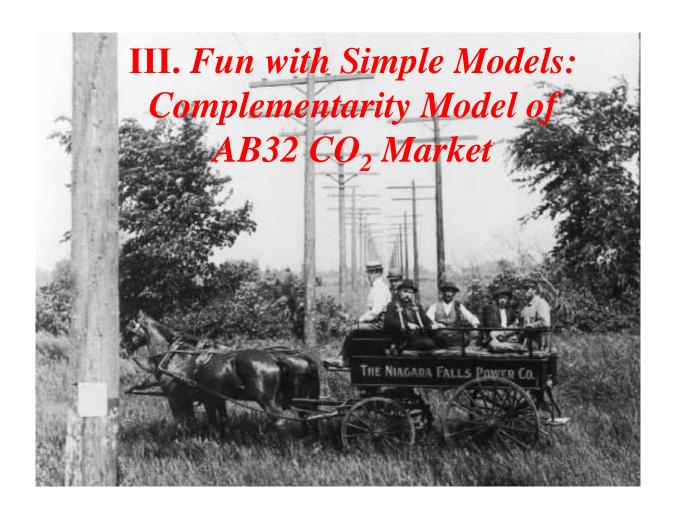
■ Small models

- Quick insights in policy debates
 - Theorems → general conclusions
 - Examples → possibility proofs
- Need:
 - transparency to show implications of assumptions

■ Large models

- Actual grid operations & planning
- Need:
 - implementable numerical solutions

■ In-between models


- Forecasting & impact analyses of policies
- Need:
 - ability to simulate many scenarios
 - represent "texture" of actual system

JHU E²SHI

Fun with Models

Fun ≡
Conclusions that
surprise &
overturn policy
beliefs

Who should be responsible for reducing CO₂?

Fuel extractors?

Oil producers/importers (US Waxman-Markey bill)

Power plants?

Power plants (EU Emissions Trading System)

US: Title IV SO₂; State greenhouse gas initiatives (RGGI)

In a single-buyer "POOLCO"-type power market

Retail suppliers/Load serving entities?

California, Western US "Load-Based" proposals

Consumers?

Tradable Quotas, Personal Carbon Allowances

JHU E²SHI

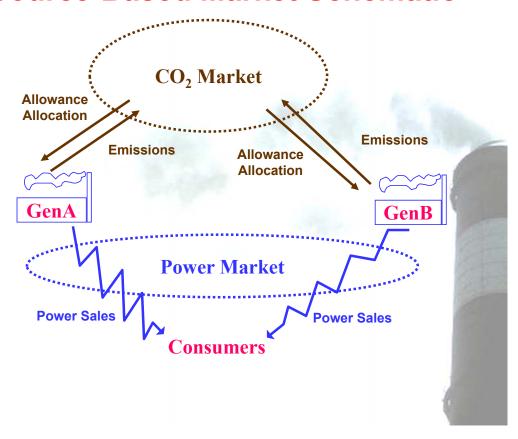
Example: The California Debate

(Hobbs, Bushnell, Wolak, *Energy Policy*, 2010; Liu, Chen, Hobbs, *Operations Research*, 2011)

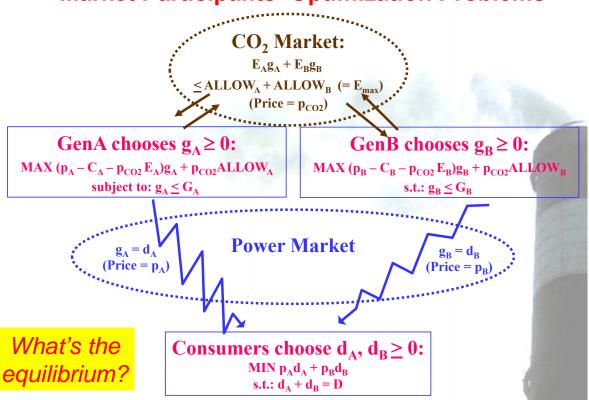
California AB32:

Goal: Reduce CO₂ to 1990 levels

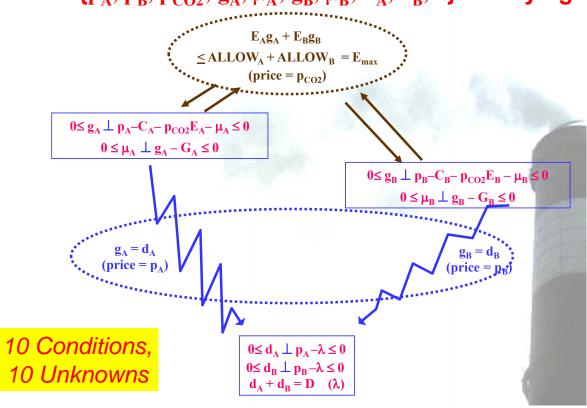
Gov. Schwarzenegger is joined by international leaders with a consistent record of addressing the global threat of climate change, New York Governor George Pataki and other environmental and industry leaders at a bill signing for AB 32 on Treasure Island in San Francisco on Tuesday, September 27, 2006.


■ Debate: 'Point of Compliance'

- I.e., Who must hold permits to cover their emissions?
 - Power plants (sources)?
 - Load serving entities (LSEs) (acting for consumers)?
- · Elsewhere, source-based dominates
 - Allocate allowances to power plants, and then trade
 - Total emissions can't exceed cap
 - US Title IV SO₂, US RGGI, EU ETS
- Load-based proposed in 2007 for California
 - Average emissions of LSE bulk power purchases < cap
 - Cheaper (Synansis Cheaper (Synansis Cheaper)
 - Provide more motivation for energy efficiency (NRDC)?

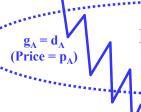

JHU E²SHI

www.wingas-uk.com


Source-Based Market Schematic

Source-Based (Competitive) Market: Market Participants' Optimization Problems

Source-Based Market Equilibrium Problem: Find $\{p_A, p_B, p_{CO2}; g_A, \mu_A; g_B, \mu_B; d_A, d_B, \lambda\}$ satisfying:


Load-Based Market: Market Participant Optimization Problems

GenA chooses $g_A \ge 0$:

MAX $(p_A - C_A)g_A$ subject to: $g_A \le G_A$

GenB chooses $g_R \ge 0$:

 $MAX (p_B - C_B)g_B$ s.t.: $g_B \le G_B$

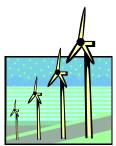
Power Market

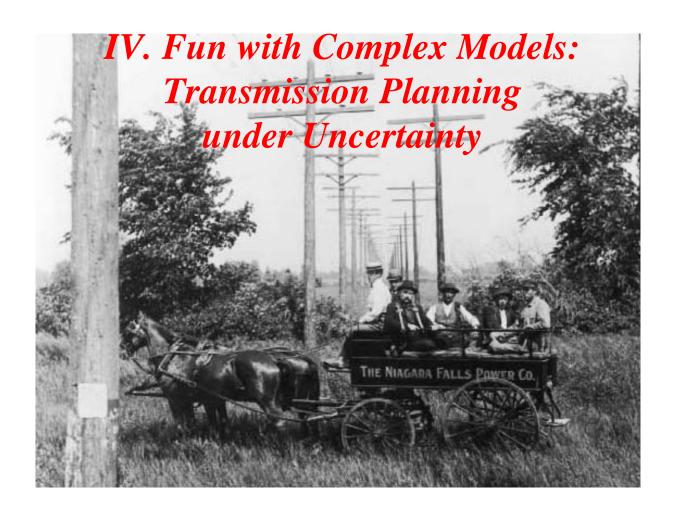
 $g_B = d_B$ (Price = 1

Consumers choose d_A , $d_R \ge 0$:

 $MIN p_A d_A + p_B d_B$ s.t.: $d_A + d_B = D$

 $E_A d_A + E_B d_B \le Load*ERate_{max} = E_{max}$




Analytical Conclusions

- Power prices:
 - Same for all plants in source-based system
 - Differentiated in load-based system
 - higher for cleaner plants
 - endangers efficiencies of PJM-like spot markets
- Allowance prices the same
- "Load side carbon cap is likely to cost California consumers significantly less than supplessue cap--Potentially billions of

dollars_per_year." ("Exploration of Costs for Load Side and Supply Side Cancellars for California," B. Biewald, Synapse Energy, Inc., Aug. 2007)

- Actually, net costs to consumers same ...
- ... If auction permits to generators, & consumers get proceeds
 - ...and if no damage to spot markets

What's a Poor Transmission Planner to do?
(van der Weijde, Hobbs, Energy Economics, 2012; Munoz & Hobbs, IEEE Trans. Power Systems, 2014)

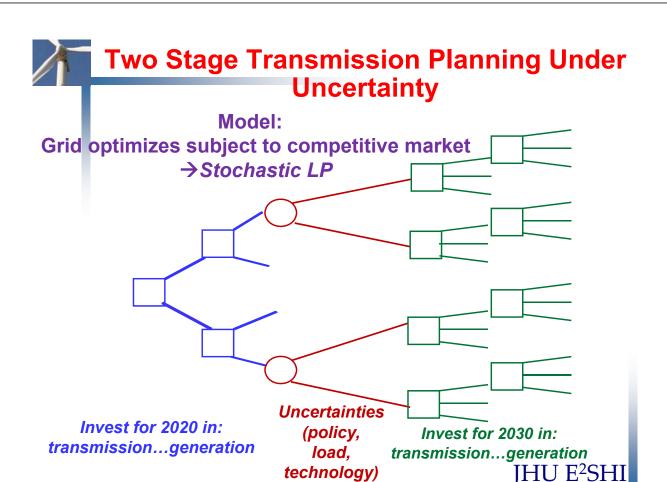
Dramatic changes a-coming!

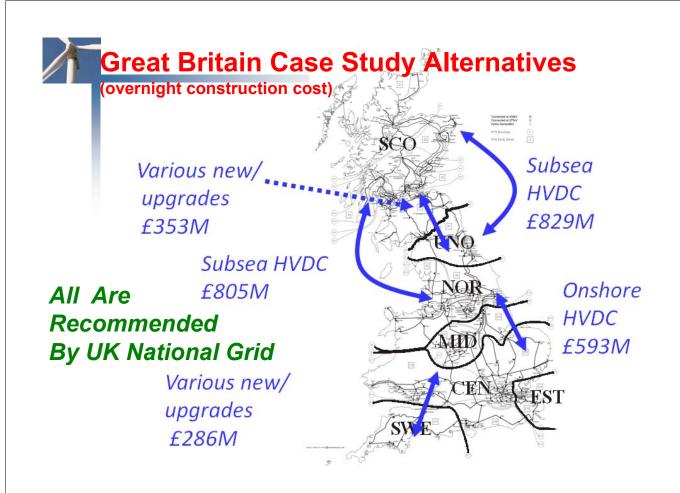
- Renewables
 - How much?
 - Where?
 - What type?
- Other generation
 - Centralized?
 - Distributed?
- Demand
 - New uses? (electric cars)
 - Controllability?
- Policy

The problem

Planning

- Decisions can be postponed: multi-stage
- Uncertainties & variability: stochastic


Important questions:


- Optimal strategy under uncertainty?
- Value of information?
- Cost of ignoring uncertainty?
- Option value of being able to postpone?

Deterministic planning can't answer!

• Stochastic multilevel can! (Fun)

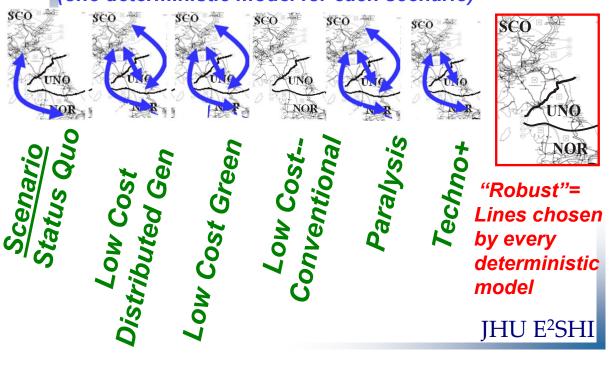
JHU E²SHI

Scenarios

Variables: _{Ge}	en. inv. cost	Var. gen cost	Trans. inv.	Demand	CO ₂	Others
Scenarios			cost		price	
tatus Quo						
ow cost DG						
ow Cost						
arge Scale						
Green						
ow Cost						
Conventional						
Paralysis						
echno+						

Optimal stochastic solution

Biomass


Fun: Uncertainty Means **Optimal to Delay**

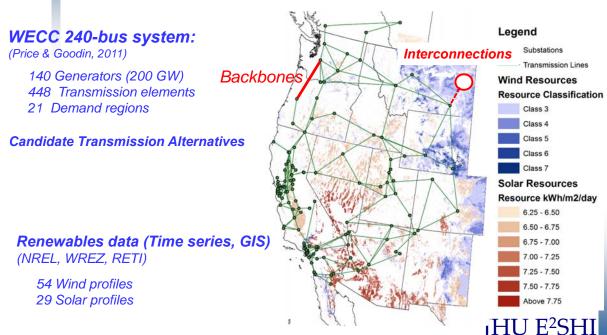
Cf. Traditional robustness analysis

2020 Installations by Scenario "Robust?" (one deterministic model for each scenario)

Cost of ignoring uncertainty

- How much do costs worsen if we naively plan for one scenario but others can happen?
 - 1. Smart solution: solve stochastic model
 - 2. Naïve solution:
 - a. Solve (deterministic) model assuming "base case" scenario
 - → naïve stage 1st decisions
 - b. Then solve stochastic model, but imposing naïve 1st stage decisions
 - → 2nd stage decisions
 - 3. Compare cost of (1) and (2)

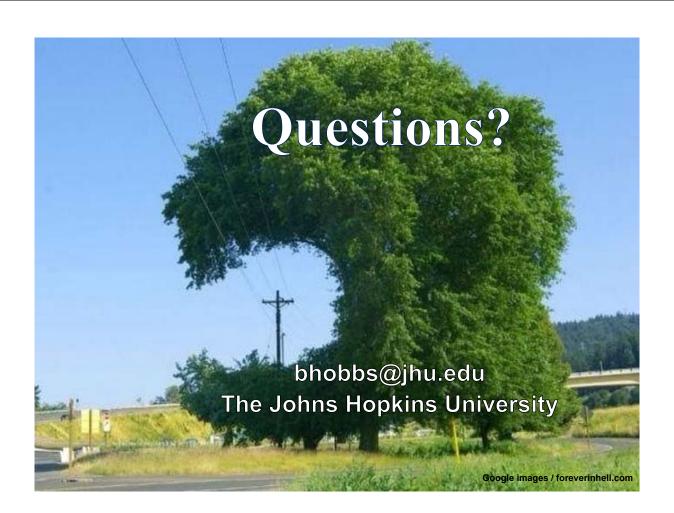
JHU E²SHI


Cost of ignoring uncertainty (for Transmission Planner only)

Scenario planned for **Cost of Ignoring Unc. Status Quo** £111M **Low Cost Distributed Gen** £4M **Low Cost Large Scale Green** £4M Low Cost Conventional £487M **Paralysis** £4M Techno+ £7M £103M (0.1%) **Average** IHU E²SHI

Large Problem: Western US 240-bus Test Case ~ 10⁶ -10⁷ Variables

(Munoz et zl. IEEE Trans. Power Systems, 2014)



V. Conclusions

- Need insight in policy & market design ⇒
 - Models that are simple, transparent, general
 - Economic fundamentals
- Need implementable solutions that recognize uncertainty ⇒
 - Particular solutions for particular places
 - Computational technology needed for largescale stochastic, non-convex problems
- Power will only become more important
 - Goals: competition benefits + sustainability
 - Planning & operations to include lots of renewables -- reliably & economically

HAVE FUN!

JHU E²SHI

