Milestone 3 Report: Summary of the Final Process Design

Design/Cost Study and Commercialization Analysis for Synthetic Jet Fuel Production at a Mississippi site from Lignite and Woody Biomass with CO₂ Capture and Storage via EOR (DOE/NETL DE-FE0023697)

prepared by
Eric D. Larson (project PI)
The Energy Systems Analysis Group
Andlinger Center for Energy & the Environment, Princeton University

with input from
Chris Greig (University of Queensland)
Worley Parsons Engineering
Emerging Fuels Technology
Politecnico di Milano

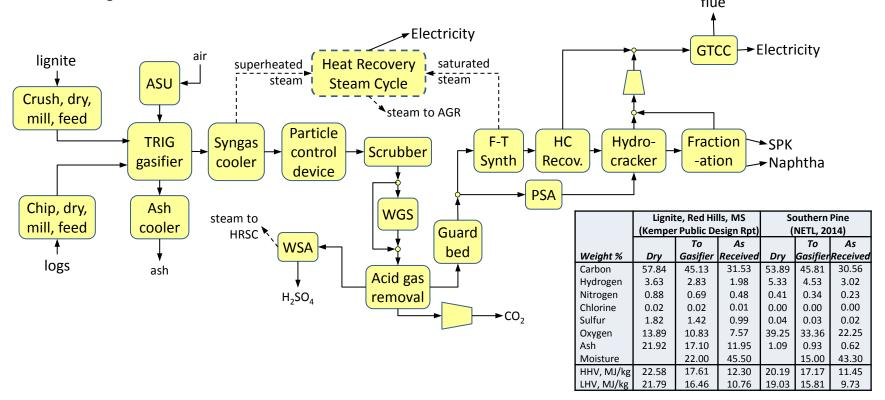
Report Content

As of mid-December 2015, the process design for the "LBJ" project was essentially complete. Minor revisions will be made through about the first quarter of 2016 as additional inputs are received from technology providers, but the final design is not expected to differ in any substantial way from the design shown in this report.*

Slide #3 gives a process overview and feedstock compositions and heating values.

Slide #4 gives the current estimate of overall process performance. The plant produces 1402 barrels per day of liquids, of which 80% is SPK, the primary product. Net electricity output (after supplying on site needs) is $56 \, \text{MW}_{\text{e}}$. Some changes in the estimated plant outputs are expected as the process design is "tweaked" in the coming months, but performance is not expected to be substantially different from that shown in slide #5.

The detailed process flows for the plant are represented in three sets of slides:


Slides #5-#8 show the process flow diagram (PFD) and stream tables for the syngas production area, as prepared by Worley Parsons Engineering with inputs from Princeton and others. Slide #9 includes a detailed composition for the gas turbine fuel stream (stream 53 on slide #5). The stream is relatively rich in methane because of operating characteristics of the TRIG gasifier and the generation of some methane during F-T synthesis. As a result, the fuel gas is readily combustible in the Siemens SGT-700 gas turbine that has been selected for the plant. A summary of the power island is shown on slide #5, including gross production of 44 MWe from the gas turbine combined cycle (GTCC) and 37 MWe from a separate heat recovery steam cycle (HRSC) that utilizes waste heat recovery from the process (detailed in slide #12) to provide steam for a steam turbine separate from the GTCC bottoming cycle turbine.

Slides #9 - #11 include a PDF and stream tables for the F-T synthesis and upgrading areas, as prepared by Emerging Fuels Technology, the selected F-T technology provider for the project.

Slide #12 includes a PFD with stream data for the HRSC, as prepared jointly by Princeton and consultants from the Politecnico di Milano.

^{*} The process design reported here is a compilation of PFDs from different sources, among which there may be some minor inconsistencies.

Simplified LBJ Plant Process Flow Overview

The plant receives lignite and pulpwood-grade logs having ultimate analysis and heating values as shown. The as-received feedstocks are separately subjected to sizing and drying before being fed to a pressurized oxygen-blown TRIG gasifier supplied with 99.5% purity oxygen from a dedicated air separation unit (ASU). The resulting syngas is cooled, filtered, and wet scrubber to prepare it for further gas conditioning. A portion of the syngas is then subjected to a sour water gas shift (WGS) to set the H₂/CO ratio at the Fischer-Tropsch (F-T) synthesis inlet to the desired value. The recombined syngas streams are sent to the acid gas removal (AGR) island, where CO₂, H₂S, and trace impurities are removed using a methanol solvent (Rectisol®). The CO₂ is compressed for delivery by pipeline. The H₂S is converted in a wet sulfuric acid (WSA) plant into saleable acid. A guard bed downstream of the AGR is included to protect the cobalt-based F-T synthesis catalyst from poisoning. F-T synthesis produces a crude liquid product, along with unconverted and other permanent gases that are separated in the hydrocarbon recovery step. The permanent gases are collected for use as fuel in the gas turbine combined cycle (GTCC) power island. The crude F-T liquids are subjected to hydrocracking and fractionation, resulting in the synthetic paraffinic kerosene and naphtha as final products. Hydrogen for the hydrocracker is supplied from a slipstream of post-AGR syngas by separating out H₂ using pressure swing adsorption (PSA). The PSA raffinate and the light ends from the hydrocracking and fractionation (after compressing) are collected and used as additional gas turbine fuel. Electricity produced by the GTCC is supplemented with electricity from a separate heat recovery steam cycle (HRSC) that utilizes process heat primarily from syngas cooling and F-T synthesis. Process heat is also used for feedstock drying and some other needs.

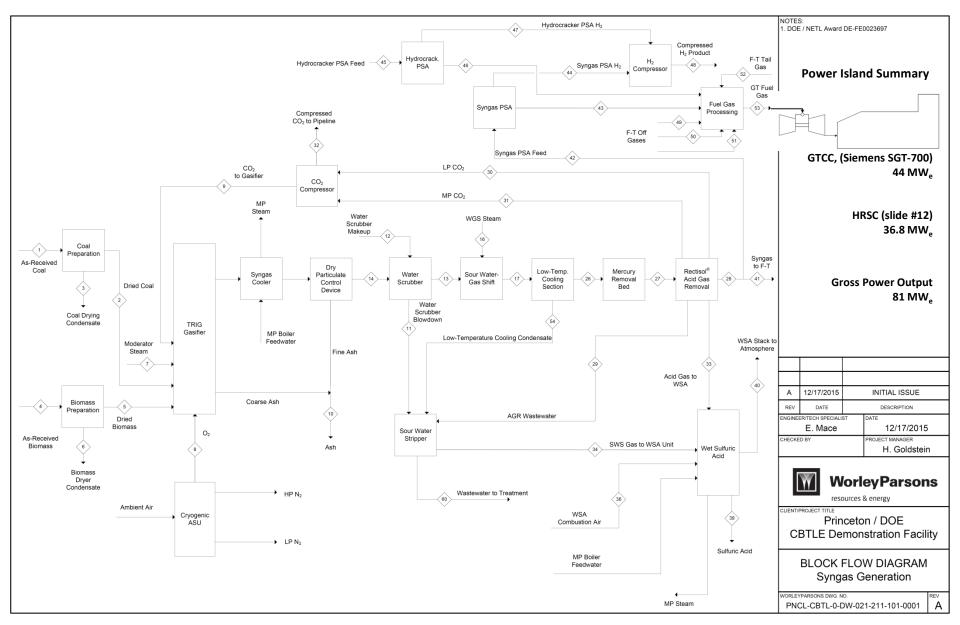
LBJ Plant Performance

(current estimates*)

PLANT CARBON E	BALANCE tCO _{2eq} /day)
Lignite input	1,786
Biomass input	620
TOTAL INPUT	2,406
SPK product	415
Naphtha product	90
Captured CO ₂	1,309
Vented, GT exhaust	494
Vented, WSA comb.	76
TOTAL OUTPUT	2,384

ON-SITE ELECTRICITY USE						
	(MW_e)					
Air separation unit	11.6					
Acid gas removal (incl. refrig.)	7.6					
CO ₂ compressor	2.8					
Other	3.0					
TOTAL	25.0					

FEEDSTOCK INPUTS		
Total feedstock input	MW, HHV	293
Biomass % of feedstock	% of HHV	25%
Lignite	metric t/d A.R.	1,545
	MW, HHV	220
Biomass	metric t/d A.R.	553
	MW, HHV	73
LIQUID OUTPUTS		
Synthetic Paraffinic Kerosene (SPK)	standard barrels/day	1,125
	lbs/hour	12,304
	BTU/lb, LHV	18,401
	million BTU/hr, LHV	226.4
	MW, LHV	66
Synthetic naphtha	standard barrels/day	277
	lbs/hour	2,710
	BTU/lb, LHV	18,710
	million BTU/hr, LHV	50.7
	MW, LHV	15
Total liquids production	barrels/day (STP)	1,402
	MW, LHV	81
ELECTRICITY		
GTCC gross generation (SGT-700 GT)	MW_e	44
HRSC gross generation	MW_e	37
On-site use, MW _e	MW_e	25
Net electricity production	MW_e	56


^{*} Sources

⁻ Feedstock inputs and CO₂ captured and vented values from WP.

⁻ Liquid flows and carbon values from EFT.

⁻ Electricity: GT World for GTCC, Politecnico di Milano for HRSC, Princeton estimates for on-site use.

Syngas Production Process Flow Diagram

		Drings	ton Coal on	d Diomess	to Liquido	and Encre	v Hoot or	d Matarial	Palanca Ta	blo			
		Prince							Balance Ta	bie			
			Gasifier (S	ee Block F	iow Diagrai	m PNCL-CE	31L-0-DW-	021-211-10	1-0001)				
NCL-CBTL-0-HT-021-000 ⁻ STREAM	1 1	2	3	4	5	6	7	8	9	10	11	Rev 12	A 14-Dec-
Description	As-Received	Dried Coal	Coal Drying	As-Received	Dried Biomass	Biomass Drying	Moderator	Oxygen	CO ₂ to Gasifier	Ash	Water Scrubber	Water Scrubber	Raw Syn
Безеприон	Coal	Dried Godi	Condensate	Biomass		Condensate	Steam	Oxygen	CO2 to Cusiner	7511	Blowdown	Makeup	Scrubb
						s and Liquid							
ole Flow, Ibmole/hr	0	0	2,373	0	0	939	2,434	2,002	489	0	406	755	11,086
ss Flow, lb/hr	0	0	42,754	0	0	16,916	43,843	64,151	21,457	0	7,327	13,594	250,29
ss Flow, Ib/hr	<u> </u>	T	T	I	T .	Solids	Ι	1	1	Γ	1	I	1
al	141,907	99,153	0	0	0	0	0	0	0	0	0	0	0
omass	0	0	0	50.809	33,893	0	0	0	0	0	0	0	0
h	0	0	0	0	0	0	0	0	0	18,469	0	0	0
tal	141,907	99,153	0	50,809	33,893	0	0	0	0	18,469	0	0	0
	*		•		Α	II Phases			*	•			
tal Mass Flow, Ib/hr	141,907	99,153	42,754	50,809	33,893	16,916	43,843	64,151	21,457	18,469	7,327	13,594	250,29
tal Mole Flow, Ibmole/hr	NA	N/A	2,373	N/A	N/A	939	2,434	2,002	489	N/A	406	755	11,08
mperature, °F	64	241	213	64	241	213	797	60	110	121	375	59	369
essure, psia	14.6	14.6	14.3	14.6	14.6	14.3	797.7	750.0	896.5	14.6	630.0	14.6	610.0
olar Vapor Frac	N/A	N/A	0.00	N/A	N/A	0.00	1.00	1.00	1.00	N/A	0.00	0.00	1.00
nthalpy, Btu/lb	-3,503	-1,990	-6,719	-4,187	-2,785	-6,719	-5,475	-11	-3,865	-337	-6,495	-6,886	-3,38
ensity, lb/ft ³	96.7	96.7	49.9	81.7	81.7	49.9	1.2	4.5	9.6	217.7	54.3	53.3	1.6
lecular Weight	N/A	N/A	18.0	N/A	N/A	18.0	18.0	32.0	43.9	N/A	18.0	18.0	22.6
tes Flow rates represent the entire facility.													
Coal, biomass and ash densities are o			7 °F and 14.696 psia	<u> </u>									
Coal, biomass and ash densities are of Ash includes unburned carbon.			7 °F and 14.696 psia	L									
Coal, biomass and ash densities are of Ash includes unburned carbon.		S			40 1 :: 40		. Uot o	Al Material	Deleve Tel				
Coal, biomass and ash densities are of Ash includes unburned carbon.	calculated on a dry basis	Prince	ton Coal an	d Biomass					Balance Tal		4)		
Coal, biomass and ash densities are cash includes unburned carbon. WorleyParsons **COUNTY OF THE PROPERTY OF	calculated on a dry basis	Prince	ton Coal an	d Biomass					Balance Tal 0-DW-021-2		1)		
Coal, biomass and ash densities are cash includes unburned carbon. WorleyParsons ***BODGE OF THE CORD CARBON COR	Sour	Prince Shift and I	ton Coal an ₋ow-Tempe	d Biomass rature Coo	ling (See B	lock Flow D	iagram Pl	NCL-CBTL-	0-DW-021-2	11-101-000	,		
Coal, biomass and ash densities are cash includes unburned carbon. WorleyParsons **COUNTY OF THE PROPERTY OF	calculated on a dry basis	Prince	ton Coal an	d Biomass	ling (See B	lock Flow D	Diagram PN	NCL-CBTL- 21	0-DW-021-2	11-101-000 23	24	25	14-Dec-2 26
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons ***Today of the Common Service & Common	Sour	Prince Shift and I	ton Coal an ₋ow-Tempe	d Biomass rature Coo	18 Low- Temperature	19 Low- Temperature Cooler 1	20 Low- Temperature	21 Low- Temperature Cooler 2	0-DW-021-2 22 Low- Temperature	23 Low- Temperature Cooler 3	24 Low- Temperature	25 Low- Temperature Cooler 4	26 Mercury Removal Be
Coal, biomass and ash densities are cash includes unburned carbon. WorleyParsons TOURNESS & PROPE PNCL-CBTL-0-HT-021-00 STREAM	Sour 14 Sour Shift	Prince Shift and I	ton Coal an	nd Biomass rature Coo	18 Low- Temperature Cooler 1 Feed	19 Low- Temperature Cooler 1 Condensate	20 Low- Temperature Cooler 2 Feed	21 Low- Temperature	22 Low-	23 Low- Temperature	24 Low-	25 Low- Temperature	26 Mercury
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons **COMMON OF THE PROPERTY	Sour 14 Sour Shift Bypass	Prince Shift and I 15 Syngas to Sour	ton Coal an _ow-Tempel 16 Sour Shift Steam	d Biomass rature Coo 17 Cooled Shifted Syngas	18 Low- Temperature Cooler 1 Feed Vapor	19 Low- Temperature Cooler 1 Condensate s and Liquids	20 Low- Temperature Cooler 2 Feed	21 Low- Temperature Cooler 2 Condensate	0-DW-021-2 22 Low- Temperature Cooler 3 Feed	23 Low- Temperature Cooler 3 Condensate	24 Low- Temperature Cooler 4 Feed	Low- Temperature Cooler 4 Condensate	26 Mercury Removal Be Feed
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons PNCL-CBTL-0-HT-021-00 STREAM Description Mole Flow, Ibmole/hr	Sour 14 Sour Shift Bypass	Prince Shift and I 15 Syngas to Sour Shift 5,857	ton Coal an _ow-Tempel 16 Sour Shift Steam	ad Biomass rature Coo 17 Cooled Shifted Syngas	18 Low- Temperature Cooler 1 Feed Vapor	19 Low- Temperature Cooler 1 Condensate s and Liquids	20 Low- Temperature Cooler 2 Feed	21 Low- Temperature Cooler 2 Condensate	22 Low- Temperature Cooler 3 Feed	23 Low- Temperature Cooler 3 Condensate	24 Low- Temperature Cooler 4 Feed	25 Low- Temperature Cooler 4 Condensate	26 Mercury Removal B Feed 8,846
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons **COUNTY OF THE PROPERTY	Sour 14 Sour Shift Bypass	Prince Shift and I 15 Syngas to Sour	ton Coal an _ow-Tempel 16 Sour Shift Steam	d Biomass rature Coo 17 Cooled Shifted Syngas	18 Low- Temperature Cooler 1 Feed Vapor	19 Low- Temperature Cooler 1 Condensate s and Liquids 1,176 21,211	20 Low- Temperature Cooler 2 Feed	21 Low- Temperature Cooler 2 Condensate	0-DW-021-2 22 Low- Temperature Cooler 3 Feed	23 Low- Temperature Cooler 3 Condensate	24 Low- Temperature Cooler 4 Feed	Low- Temperature Cooler 4 Condensate	26 Mercury Removal B Feed
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons **PNCL-CBTL-0-HT-021-00 STREAM Description Mole Flow, lbmole/hr Mass Flow, lb/hr	Sour 14 Sour Shift Bypass	Prince Shift and I 15 Syngas to Sour Shift 5,857	ton Coal an _ow-Tempel 16 Sour Shift Steam	ad Biomass rature Coo 17 Cooled Shifted Syngas	18 Low- Temperature Cooler 1 Feed Vapor	19 Low- Temperature Cooler 1 Condensate s and Liquids	20 Low- Temperature Cooler 2 Feed	21 Low- Temperature Cooler 2 Condensate	22 Low- Temperature Cooler 3 Feed	23 Low- Temperature Cooler 3 Condensate	24 Low- Temperature Cooler 4 Feed	25 Low- Temperature Cooler 4 Condensate	Mercury Removal B Feed 8,846
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons PNCL-CBTL-0-HT-021-00 STREAM Description Mole Flow, lbmole/hr Mass Flow, lb/hr Mass Flow, lb/hr	Sour 14 Sour Shift Bypass 5,229 118,064	Prince Shift and I 15 Syngas to Sour Shift 5.857 132,231	ton Coal an _ow-Tempel 16 Sour Shift Steam	d Biomass rature Coo 17 Cooled Shifted Syngas 7,092 154,488	18 Low- Temperature Cooler 1 Feed Vapor 12,322 272,552	19 Low- Temperature Cooler 1 Condensate s and Liquids 1,176 21,211 Solids	20 Low- Temperature Cooler 2 Feed S 11,145 251,341	21 Low- Temperature Cooler 2 Condensate 1,478 26,637	22 Low- Temperature Cooler 3 Feed 9,668 224,704	23 Low- Temperature Cooler 3 Condensate	24 Low- Temperature Cooler 4 Feed 9,336 218,720	25 Low- Temperature Cooler 4 Condensate	26 Mercury Removal B Feed 8,846 209,911
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons **COMMON TO STREAM** **Description** Mole Flow, Ibmole/hr Mass Flow, Ib/hr Mass Flow, Ib/hr Coal	Sour Shift Bypass 5,229 118,064 Sour Sour	Prince Shift and I 15 Syngas to Sour Shift 5,857 132,231	ton Coal an _ow-Tempel 16 Sour Shift Steam 1,235 22,257	17 Cooled Shifted Syngas 7,092 154,488	18 Low-Temperature Cooler 1 Feed Vapor 12,322 272,552	19 Low- Temperature Cooler 1 Condensate s and Liquids 1,176 21,211 Solids	20 Low- Temperature Cooler 2 Feed S 11,145 251,341	21 Low- Temperature Cooler 2 Condensate 1,478 26,637	22 Low- Temperature Cooler 3 Feed 9,668 224,704	23 Low- Temperature Cooler 3 Condensate	24	25 Low- Temperature Cooler 4 Condensate 490 8,809	26 Mercury Removal Be Feed 8,846 209,911
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons **COUNTY A PARTY **PONCE & PARTY **PON	Sour Shift Bypass S,229 118,064 Sour Sour	Prince Shift and I 15 Syngas to Sour Shift 5,857 132,231	ton Coal an _ow-Tempel 16 Sour Shift Steam 1,235 22,257	17 Cooled Shifted Syngas 7,092 154,488	18 Low- Temperature Cooler 1 Feed Vapor 12,322 272,552 0 0 0	19 Low- Temperature Cooler 1 Condensate s and Liquids 1,176 21,211 Solids	Low- Temperature Cooler 2 Feed S 11,145 251,341	21 Low- Temperature Cooler 2 Condensate 1,478 26,637	22 Low-Temperature Cooler 3 Feed 9,668 224,704	23 Low- Temperature Cooler 3 Condensate 332 5,983	24	25 Low- Temperature Cooler 4 Condensate 490 8,809	Mercury Removal Be Feed 8,846 209,911
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons **COUNTY OF THE PARTY OF	Sour	Prince Shift and I 15 Syngas to Sour Shift 5,857 132,231 0 0 0	16 Sour Shift Steam 1,235 22,257	17 Cooled Shifted Syngas 7,092 154,488	18 Low- Temperature Cooler 1 Feed Vapor 12,322 272,552 0 0 0 0	19 Low- Temperature Cooler 1 Condensate s and Liquids 1,176 21,211 Solids	20 Low- Temperature Cooler 2 Feed S 11,145 251,341 0 0 0	21 Low- Temperature Cooler 2 Condensate 1,478 26,637	22 Low-Temperature Cooler 3 Feed 9,668 224,704	23 Low- Temperature Cooler 3 Condensate 332 5,983	24	25	26 Mercury Removal Be Feed 8,846 209,911 0 0 0
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons **COUNTY OF THE PARTY OF	Sour Shift Bypass S,229 118,064 Sour Sour	Prince Shift and I 15 Syngas to Sour Shift 5,857 132,231	ton Coal an _ow-Tempel 16 Sour Shift Steam 1,235 22,257	17 Cooled Shifted Syngas 7,092 154,488	18 Low- Temperature Cooler 1 Feed Vapor 12,322 272,552 0 0 0 0 0	19 Low- Temperature Cooler 1 Condensate s and Liquids 1,176 21,211 Solids 0 0 0 0	Low- Temperature Cooler 2 Feed S 11,145 251,341	21 Low- Temperature Cooler 2 Condensate 1,478 26,637	22 Low-Temperature Cooler 3 Feed 9,668 224,704	23 Low- Temperature Cooler 3 Condensate 332 5,983	24	25 Low- Temperature Cooler 4 Condensate 490 8,809	26 Mercury Removal Be Feed 8,846 209,911
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons PNCL-CBTL-0-HT-021-00 STREAM Description Mole Flow, Ibmole/hr Mass Flow, Ib/hr Coal Biomass Ash Total	Sour Sour Sour Sour Sour Sour Sour Sour Shift Bypass S,229 118,064 Sour Sour	Prince Shift and I 15 Syngas to Sour Shift 5.857 132,231 0 0 0 0	ton Coal an _ow-Temper 16 Sour Shift Steam 1,235 22,257	d Biomass rature Coo 17 Cooled Shifted Syngas 7,092 154,488	18 Low- Temperature Cooler 1 Feed Vapor 12,322 272,552 0 0 0 0 0 A	19 Low- Temperature Cooler 1 Condensate s and Liquids 1,176 21,211 Solids 0 0 0 0 0 II Phases	20 Low- Temperature Cooler 2 Feed S 11,145 251,341 0 0 0	21 Low- Temperature Cooler 2 Condensate 1,478 26,637	22 Low-Temperature Cooler 3 Feed 9,668 224,704	23 Low- Temperature Cooler 3 Condensate 332 5,983	24 Low-Temperature Cooler 4 Feed 9,336 218,720 0 0 0 0	25 Low- Temperature Cooler 4 Condensate 490 8,809 0 0 0 0	26 Mercury Removal Be Feed 8,846 209,911 0 0 0 0
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons **COMMON TO STREAM** **Description** Mole Flow, Ibmole/hr Mass Flow, Ib/hr Coal Biomass Ash Total Mass Flow, Ib/hr Total Mass Flow, Ib/hr	Sour Shift Bypass S,229 118,064 Sour Sour	Prince Shift and I 15 Syngas to Sour Shift 5,857 132,231 0 0 0 0 132,231	ton Coal anow-Tempe	Tooled Shifted Syngas 7,092 154,488	18 Low- Temperature Cooler 1 Feed Vapor 12,322 272,552 0 0 0 0 A 272,552	19 Low- Low- Low- Temperature Cooler 1 Condensate 1,176 21,211 Solids 0 0 0 0 0 Il Phases 21,211	20 Low- Temperature Cooler 2 Feed S 11,145 251,341 0 0 0	21 Low- Temperature Cooler 2 Condensate 1,478 26,637 0 0 0 0 0 26,637	22 Low-Temperature Cooler 3 Feed 9,668 224,704 0 0 0 224,704	23 Low- Temperature Cooler 3 Condensate 332 5,983	24 Low-Temperature Cooler 4 Feed 9,336 218,720 0 0 0 0 218,720	25 Low- Temperature Cooler 4 Condensate 490 8,809 0 0 0 0 8,809	26 Mercury Removal Bi Feed 3,846 209,911 0 0 0
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons **TOTAL OPERATION OF THE PROPERTY OF THE	Sour Shift Bypass S,229 118,064 Sour Sour	Prince Shift and I 15 Syngas to Sour Shift 5,857 132,231 0 0 0 0 132,231 5,857	ton Coal an _ow-Tempel 16 Sour Shift Steam 1,235 22,257 0 0 0 0 0 22,257 1,235	17 Cooled Shifted Syngas 7,092 154,488 0 0 0 154,488 7,092	18 Low- Temperature Cooler 1 Feed Vapor 12,322 272,552 0 0 0 0 0 A 272,552 12,322	19 Low- Temperature Cooler 1 Condensate s and Liquids 1,176 21,211 Solids 0 0 0 0 II Phases 21,211 1,176	20 Low- Temperature Cooler 2 Feed S 11,145 251,341 0 0 0 0 0 251,341 11,145	21 Low- Temperature Cooler 2 Condensate 1,478 26,637 0 0 0 0 26,637 1,478	22 Low-Temperature Cooler 3 Feed 9,668 224,704 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	23 Low- Temperature Cooler 3 Condensate 332 5,983 0 0 0 0 0 5,983 332	24 Low-Temperature Cooler 4 Feed 9,336 218,720 0 0 0 0 218,720 218,720 9,336	25 Low- Temperature Cooler 4 Condensate 490 8,809 0 0 0 0 8,809 490	26 Mercury Removal Breed 8,846 209,911 0 0 0 0
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons **TOTAL CONTROL OF THE CON	Sour Sour	Prince Shift and I 15 Syngas to Sour Shift 5,857 132,231 0 0 0 132,231 5,857 374	16 Sour Shift Steam 1,235 22,257 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 Cooled Shifted Syngas 7,092 154,488 0 0 0 154,488 7,092 372	18 Low-Temperature Cooler 1 Feed Vapor 12,322 272,552 0 0 0 0 A 272,552 12,322 372	19 Low- Temperature Cooler 1 Condensate s and Liquids 1,176 21,211 Solids 0 0 0 0 II Phases 21,211 1,176 332	20 Low- Temperature Cooler 2 Feed 8 11,145 251,341 0 0 0 0 0 0 11,145 332	21 Low- Temperature Cooler 2 Condensate 1,478 26,637 0 0 0 0 0 1,478 26,637 1,478 271	22 Low- Temperature Cooler 3 Feed 9,668 224,704 0 0 0 0 0 0	23 Low- Temperature Cooler 3 Condensate 332 5,983 0 0 0 0 0 5,983 332 242	24 Low-Temperature Cooler 4 Feed 9,336 218,720 0 0 0 0 218,720 218,720 9,336 242	25 Low- Temperature Cooler 4 Condensate 490 8,809 0 0 0 0 0 0 8,809	26 Mercury Removal B Feed 8,846 209,911 0 0 0 0 209,911 8,846 100
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons PNCL-CBTL-0-HT-021-00 STREAM Description Mole Flow, Ibmole/hr Mass Flow, Ib/hr Coal Biomass Ash Total Total Mass Flow, Ib/hr Total Mole Flow, Ibmole/hr Temperature, °F Pressure, psia	Sour 01 14 Sour Shift Bypass 5,229 118,064 0 0 0 118,064 5,229 374 610.0	Prince Shift and I 15 Syngas to Sour Shift 5.857 132,231 0 0 0 0 132,231 5.857 374 610.0	ton Coal an _ow-Tempel 16 Sour Shift Steam 1,235 22,257 0 0 0 0 1,235 797 797.7	17 Cooled Shifted Syngas 7,092 154,488 0 0 0 154,488 7,092 372 584.0	18 Low-Temperature Cooler 1 Feed Vapor 12,322 272,552 0 0 0 0 272,552 A 272,552 12,322 372 584.0	19	20 Low- Temperature Cooler 2 Feed S 11,145 251,341 0 0 0 0 0 0 251,341 11,145 332 574.5	21 Low- Temperature Cooler 2 Condensate 1,478 26,637 0 0 0 0 26,637 1,478 271 565.0	22 Low- Temperature Cooler 3 Feed 9,668 224,704 0 0 0 0 0 0 224,704 224,704	23 Low- Temperature Cooler 3 Condensate 332 5,983 0 0 0 0 0 5,983 332 242 555.5	24 Low-Temperature Cooler 4 Feed 9,336 218,720 0 0 0 0 218,720 218,720 218,720 242 555.5	25 Low- Temperature Cooler 4 Condensate 490 8,809 0 0 0 0 8,809 490 100 546.0	26 Mercury Removal Bi Feed 8,846 209,911 0 0 0 0 209,911 8,846 100 546.0
Coal, biomass and ash densities are of Ash includes unburned carbon. WorleyParsons ***TOURNER TOURS	Sour Shift Bypass	Prince Shift and I 15 Syngas to Sour Shift 5,857 132,231 0 0 0 0 132,231 5,857 374 610.0 1.00	ton Coal an _ow-Tempel 16 Sour Shift Steam 1,235 22,257 0 0 0 0 0 22,257 1,235 797 797.7 1,00	17 Cooled Shifted Syngas 7,092 154,488 0 0 0 154,488 7,092 372 584.0 1.00	18 Low-Temperature Cooler 1 Feed Vapor 12,322 272,552 0 0 0 0 272,552 12,322 372 584.0 1.00	19	20 Low- Temperature Cooler 2 Feed S 11,145 251,341 0 0 0 0 0 0 0 251,341 11,145 332 574.5 1.00	21 Low- Temperature Cooler 2 Condensate 1,478 26,637 0 0 0 0 26,637 1,478 271 565.0 0.00	22 Low-Temperature Cooler 3 Feed 9,668 224,704 0 0 0 0 224,704 9,668 224,704 9,668 100 100 100 100 100 100 100 100 100 10	23 Low- Temperature Cooler 3 Condensate 332 5,983 0 0 0 0 0 5,983 332 242 555.5 0.00	24 Low-Temperature Cooler 4 Feed 9,336 218,720 0 0 0 0 218,720 9,336 218,720 9,336 218,720 10 10 218,720 10 218,720 10 218,720 218,7	25 Low- Temperature Cooler 4 Condensate 490 8,809 0 0 0 0 8,809 490 490 100 546.0 0.00	26 Mercury Removal Bi Feed 8,846 209,911 0 0 0 209,911 8,846 100 546.0 1.00
PNCL-CBTL-0-HT-021-00 STREAM Description Mole Flow, lbmole/hr Mass Flow, lb/hr Coal Biomass Ash Total Total Mass Flow, lb/hr Total Mole Flow, lbmole/hr Temperature, °F Pressure, psia	Sour 01 14 Sour Shift Bypass 5,229 118,064 0 0 0 118,064 5,229 374 610.0	Prince Shift and I 15 Syngas to Sour Shift 5.857 132,231 0 0 0 0 132,231 5.857 374 610.0	ton Coal an _ow-Tempel 16 Sour Shift Steam 1,235 22,257 0 0 0 0 1,235 797 797.7	17 Cooled Shifted Syngas 7,092 154,488 0 0 0 154,488 7,092 372 584.0	18 Low-Temperature Cooler 1 Feed Vapor 12,322 272,552 0 0 0 0 272,552 A 272,552 12,322 372 584.0	19	20 Low- Temperature Cooler 2 Feed S 11,145 251,341 0 0 0 0 0 0 251,341 11,145 332 574.5	21 Low- Temperature Cooler 2 Condensate 1,478 26,637 0 0 0 0 26,637 1,478 271 565.0	22 Low- Temperature Cooler 3 Feed 9,668 224,704 0 0 0 0 0 0 224,704 224,704	23 Low- Temperature Cooler 3 Condensate 332 5,983 0 0 0 0 0 5,983 332 242 555.5	24 Low-Temperature Cooler 4 Feed 9,336 218,720 0 0 0 0 218,720 218,720 218,720 242 555.5	25 Low- Temperature Cooler 4 Condensate 490 8,809 0 0 0 0 8,809 490 100 546.0	26 Mercury Removal Bi Feed 8,846 209,911 0 0 0 0 209,911 8,846 100 546.0

6

Notes

Flow rates represent the entire facility.

4. Ash includes unburned carbon.

3. Coal, biomass and ash densities are calculated on a dry basis.

2. Enthalpies are referenced to the constituent elements in their standard states at 77 °F and 14.696 psia.

V	WorleyPars
---	------------

4. Ash includes unburned carbon.

WorleyParsons

Molecular Weight

. Flow rates represent the entire facility.

4. Ash includes unburned carbon.

3. Coal, biomass and ash densities are calculated on a dry basis.

Notes

11.1

Enthalpies are referenced to the constituent elements in their standard states at 77 °F and 14.696 psia.

11.1

20.1

2.1

4.9

Princeton Coal and Biomass to Liquids and Energy - Heat and Material Balance Table AGR, CO₂ Compressor and WSA (See Block Flow Diagram PNCL-CBTL-0-DW-021-211-101-0001)

PNCL-CBTL-0-HT-021-0001													Rev	/ A 14-Dec-2015
STREAM	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Description	Acid Gas Removal Feed	Sweetened Syngas	AGR Wastewater	LP CO ₂ to Compressor	MP CO ₂ to Compressor	Compressed CO ₂ to Pipeline	Acid Gas to WSA Unit	SWS Gas to WSA Unit	Mixed WSA Feed	WSA Combustion Air	Hydrogen Peroxide to SO ₂ Scrubber	Acid Diluent Water	Sulfuric Acid to Storage	WSA Stack to Atmosphere
						Vapors and	Liquids							, , , , , , , , , , , , , , , , , , ,
Mole Flow, Ibmole/hr	8,846	5,392	737	2,669	558	2,737	213	53	266	37,413	0	14	62	845
Mass Flow, lb/hr														
Total	209,911	59,945	13,476	117,411	23,924	119,877	8,450	1,027	9,477	1,078,806	9	261	4,634	25,288
						Solid	Is							
Mass Flow, lb/hr														
Coal	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Biomass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ash	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
						All Pha	ses							
Total Mass Flow, lb/hr	209,911	59,945	13,476	117,411	23,924	119,877	8,450	1,027	9,477	1,078,806	9	261	4,634	25,288
Total Mole Flow, Ibmole/hr	8,846	5,392	737	2,669	558	2,737	213	53	266	37,413	0	14	62	845
Temperature, °F	99	83	100	89	88	110	105	187	120	64	59	59	72	160
Pressure, psia	536.0	500.0	24.9	20.0	50.0	2,215.0	29.0	23.0	23.0	14.6	50.0	14.6	14.9	14.6
Molar Vapor Frac	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	1.00
Enthalpy, Btu/lb	-3,153	-1,521	-6,743	-3,844	-3,809	-3,932	-3,100	-2,970	-3,086	-49	-2,418	-6,886	-3,802	-1,466
Density, lb/ft ³	2.2	0.9	58.8	0.2	0.4	46.9	0.2	0.1	0.1	0.1	89.5	53.3	60.7	0.1
Molecular Weight	23.7	11.1	18.3	44.0	42.9	43.8	39.6	19.5	35.6	28.8	34.0	18.0	74.8	29.9
Notes														
 Flow rates represent the entire facility. 														
Enthalpies are referenced to the constitue			77 °F and 14.696 ps	sia.										
Coal, biomass and ash densities are calc	ulated on a dry basi	iS.												

		Prince	ton Coal ar	nd Biomass	to Liquids	and Energ	y - Heat ar	nd Material	Balance Ta	ble			
				el Gas (See									
PNCL-CBTL-0-HT-021-0	001			•								Rev	A 14-Dec-20
STREAM	41	42	43	44	45	46	47	48	49	50	51	52	53
Description	Sweetened Syngas to F-T	Syngas PSA Feed	Syngas PSA Offgas	Syngas PSA H ₂	Hydrocracker PSA Feed	Hydrocracker PSA Off Gas	Hydrocracker PSA H ₂	Compressed H ₂ Product	Main Fractionator Off Gas	F-T Middle Distillate Off Gas	F-T Heavy Distllate Off Gas	F-T Tail Gas	GT Fuel Gas
	·	•	•	•	Vapo	rs and Liquid	s	•	•	•	•		
Mole Flow, Ibmole/hr	5,045	347	175	173	388	99	288	461	37	5	4	733	1,052
Mass Flow, lb/hr	56,085	3,860	3,501	358	1,882	1,300	582	940	1,640	162	111	15,185	21,898
						Solids	•		-		·		-
Mass Flow, lb/hr													
Coal	0	0	0	0	0	0	0	0	0	0	0	0	0
Biomass	0	0	0	0	0	0	0	0	0	0	0	0	0
Ash	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0
					į.	All Phases							
Total Mass Flow, lb/hr	56,085	3,860	3,501	358	1,882	1,300	582	940	1,640	162	111	15,185	21,898
Total Mole Flow, Ibmole/hr	5,045	347	175	173	388	99	288	461	37	5	4	733	1,052
Temperature, °F	83	86	90	110	110	90	110	110	110	90	250	110	237
Pressure, psia	500.0	500.0	34.7	490.0	714.7	34.7	704.7	849.7	24.7	14.7	14.7	341.2	439.7
Molar Vapor Frac	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Enthalpy, Btu/lb	-1,521	-1,521	-1,676	107	-644	-986	110	109	-1,028	-1,595	-2,259	-2,071	-1,805
Density, lb/ft ³	0.9	0.9	0.1	0.2	0.6	0.1	0.2	0.3	0.2	0.1	0.1	1.2	1.2

13.1

2.0

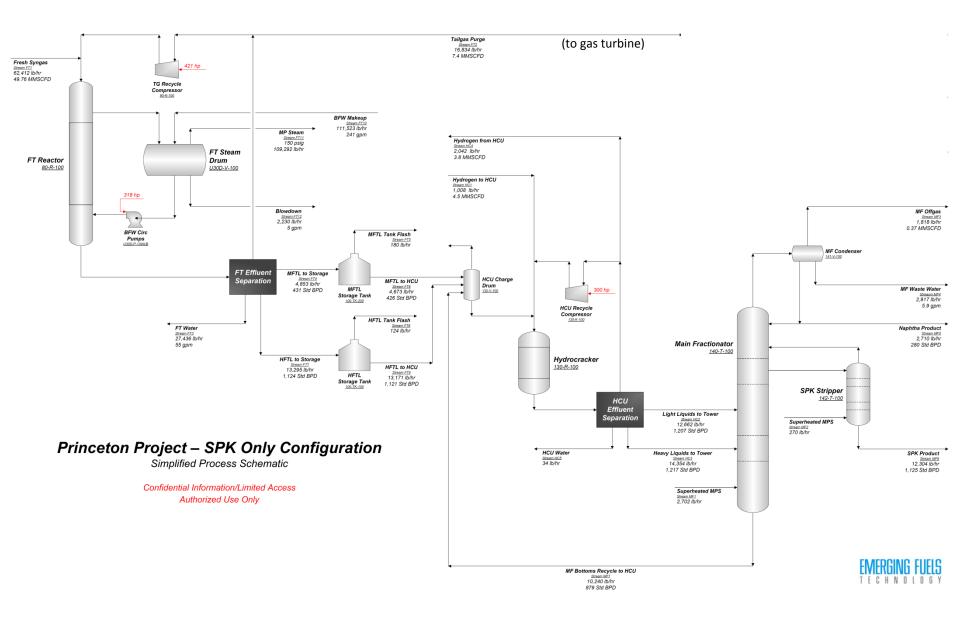
2.0

44.8

34.7

GT Fuel Gas (stream 53)

details on next page

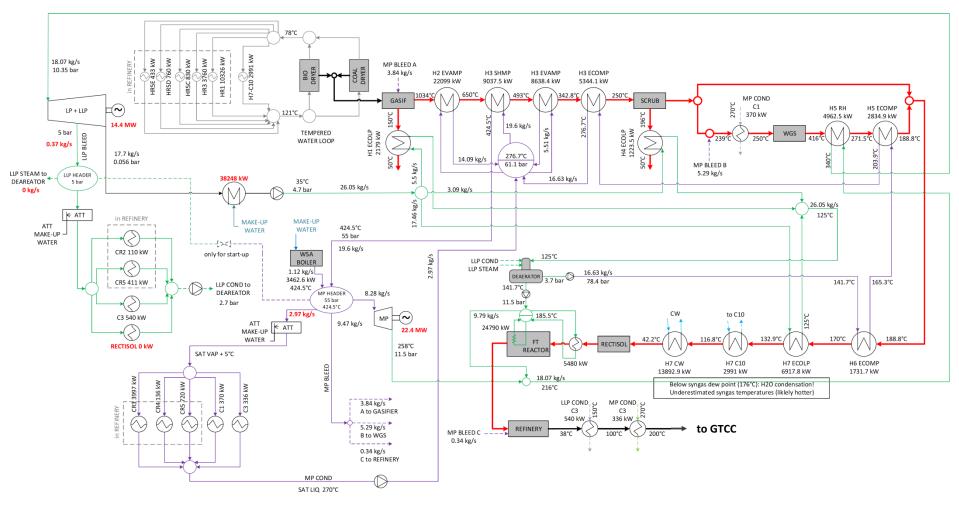


Princeton Coal and Biomass to Liquids and Energy - Heat and Material Balance Table
Sour Water Stripper (See Block Flow Diagram PNCL-CBTL-0-DW-021-211-101-0001)

PNCL-CBTL-0-HT-021-0001 Rev A 14-Dec-2015 STREAM 55 57 54 56 58 59 60 Low-Sour Water Sour Water NaOH to Sour Temperature Sour Water Sour Water Stripper Wastewater to Description Stripper Cooling **Drum Off Gas** Stripper Feed Water Stripper Bottoms to Treatment Overhead Condensate Cooler Vapors and Liquids Mole Flow, Ibmole/hr 3,476 10 4,608 5 43 4,571 4,571 Mass Flow, lb/hr 62,641 230 83,214 86 797 82,503 82,503 Solids Mass Flow, lb/hr 0 0 0 0 0 0 Biomass 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 0 0 0 0 0 0 **All Phases** Total Mass Flow, lb/hr 62,641 230 83,214 86 797 82,503 82,503 Total Mole Flow, lbmole/hr 3,476 10 4,608 5 43 4,571 4,571 Temperature, °F 265 220 221 59 178 250 120 Pressure, psia 546.0 27.4 47.4 14.6 23.0 30.0 27.4 Molar Vapor Frac 0.00 1.00 0.00 0.00 1.00 0.00 0.00 Enthalpy, Btu/lb -6,618 -4,399 -6,633 -6,486 -2,558 -6,636 -6,766 Density, lb/ft3 48.4 59.1 76.2 0.1 58.7 61.7 0.1 Molecular Weight 18.0 23.0 18.1 18.4 18.7 18.1 18.1 1. Flow rates represent the entire facility. 2. Enthalpies are referenced to the constituent elements in their standard states at 77 °F and 14.696 psia. 3. Coal, biomass and ash densities are calculated on a dry basis. 4. Ash includes unburned carbon.

GT Fuel Gas (stream 53) details							
Mole Flow, Ibmole/hr		Vol %					
Ar	6	0.58					
CO	230	21.88					
CO ₂	70	6.68					
H ₂	217	20.60					
H₂O	7	0.66					
N ₂	7	0.67					
CH₄	429	40.79					
C ₂ H ₆	20	1.91					
C ₃ H ₈	16	1.53					
n-C ₄ H ₁₀	4	0.40					
n-C ₅ H ₁₂	4	0.35					
<i>n</i> -C ₆ H ₁₄	2	0.23					
n-C ₇ +	2	0.15					
C ₂ =	2	0.21					
C ₃ =	7	0.70					
1-C ₄ =	5	0.44					
1-C ₅ =	1	0.11					
1-C ₆ =	1	0.05					
<i>i</i> -C₄H₁0	10	0.94					
<i>i</i> -C ₅ H ₁₂	6	0.59					
2-Methylpentane	3	0.30					
2-Methylhexane	1	0.11					
Ethanol	1	0.05					
Total Mole Flow, lbmole/hr	1,052	100.00					
Total Mass Flow, lb/hr	21,898						
Temperature, °F	237						
Pressure, psia	439.7						
Density, lb/ft ³	1.2						
Molecular Weight	20.8						

F-T Synthesis and Refining Process Flow Diagram



Stream Designation	FT1	FT2	FT3	FT4	FT5	FT6	FT7
Stream Description	Fresh Syngas	Tailgas Purge	FT Water	MFTL to Storage	MFTL Tank Flash	MFTL to HCU	HFTL to Storage
Property [Units]							
Pressure [psig]	375.00	326.50	50.00	150.00	0.00	50.00	150.00
Vapour Fraction	1.00	1.00	0.00	0.04	1.00	0.00	0.05
Temperature [F]	130.00	109.86	110.71	109.52	90.00	250.00	320.98
Volumetric Flow							
-Liquid (Actual GPM)	0.00	0.00	55.22	13.58	0.00	14.51	37.80
-Liquid (std barrels/day)	0.00	0.00	1885.51	456.10	0.00	439.13	1130.81
-Gas (MMSCFD)	49.76	7.38	0.00	0.02	0.05	0.00	0.02
-Gas (ACFM)	1490.46	234.51	0.05	1.08	34.45	0.00	1.77
Molar Flow [lbmole/hr]	5474.11	812.41	1517.79	40.61	5.19	35.42	42.00
Mass Flow [lb/hr]	62411.95	16834.43	27436.33	4852.70	179.85	4672.84	13294.79
-Vapor	62411.95	16834.43	0.93	42.29	179.85	0.00	48.28
-Liquid	0.00	0.00	1.16	4810.41	0.00	4672.84	13246.51
-Aqueous	0.00	0.00	27434.24	0.00	0.00	0.00	0.00
Molecular Weight	11.40	20.72	18.08	119.50	34.68	131.93	316.53
Lower Heating Value [Btu/lb]	10,636	12,695	48	18,181	14,375	18,328	18,168
Heat Flow (LHV Basis) [MMBtu/hr]	663.79	213.71	1.32	88.23	2.59	85.64	241.53
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•	•			•
Stream Designation	FT8	FT9	FT10	FT11	FT12	HC1	HC2
Stream Description	HFTL Tank Flash	HFTL to HCU	BFW Makeup	MP Steam	Blowdown	Hydrogen to	Light Liquids to
Duran auto (Ulaita)						HCU	Tower
Property [Units]							
Pressure [psig]	0.00	50.00	155.00	150.00	135.00	835.00	42.00
Vapour Fraction	1.00	0.00	0.00	1.00	0.01	1.00	0.08
Temperature [F]	250.00	250.07	287.07	366.58	358.27	120.00	110.23
Volumetric Flow							
-Liquid (Actual GPM)	0.00	36.01	240.90	0.00	4.97	0.00	36.01
-Liquid (std barrels/day)	0.00	1122.09	7651.68	0.00	151.15	0.00	1206.73
-Gas (MMSCFD)	0.04	0.00	0.00	55.15	0.01	4.55	0.08
-Gas (ACFM)	37.69	0.00	0.00	5028.20	1.38	62.31	16.19
Molar Flow [lbmole/hr]	4.38	37.62	6190.51	6066.70	123.81	500.00	112.36
Mass Flow [lb/hr]	123.48	13171.31	111522.62	109292.17	2230.45	1008.00	12662.15
-Vapor	123.48	0.00	0.00	109292.17	27.38	1008.00	236.81
-Liquid	0.00	13171.31	0.00	0.00	0.00	0.00	12425.34
-Aqueous	0.00	0.00	111522.62	0.00	2203.07	0.00	0.00
Molecular Weight	28.21	350.07	18.02	18.02	18.02	2.02	112.69
	12,069	18,225	0	0	0	51,489	18/383
Lower Heating Value [Btu/lb]	12,009	10,223	U	U	U	31,403	10,363

Stream Designation	нс3	HC4	HC5	MF1	MF2	MF3	MF4
Stream Description	Heavy Liquids to Tower	Hydrogen from HCU	HCU Water	Superheated MPS	Superheated MPS	MF Offgas	MF Waste Water
Property [Units]							
Pressure [psig]	37.00	700.00	50.00	17.00	17.00	10.00	10.00
Vapour Fraction	0.14	1.00	0.00	1.00	1.00	1.00	0.00
Temperature [F]	450.78	109.94	111.82	550.00	550.00	110.00	110.00
Volumetric Flow							
-Liquid (Actual GPM)	44.71	0.00	0.07	0.00	0.00	0.00	5.86
-Liquid (std barrels/day)	1216.81	0.00	2.33	0.00	0.00	0.00	200.12
-Gas (MMSCFD)	0.08	3.83	0.00	1.36	0.14	0.37	0.00
-Gas (ACFM)	27.37	60.79	0.00	849.36	84.94	163.65	0.00
Molar Flow [lbmole/hr]	61.94	420.80	1.89	149.97	15.00	40.58	161.90
Mass Flow [lb/hr]	14354.40	2042.16	34.00	2701.65	270.17	1818.22	2916.68
-Vapor	393.36	2042.16	0.00	2701.65	270.17	1818.22	0.00
-Liquid	13961.03	0.00	0.00	0.00	0.00	0.00	0.00
-Aqueous	0.00	0.00	34.00	0.00	0.00	0.00	2916.68
Molecular Weight	231.74	4.85	18.01	18.02	18.02	44.81	18.02
Lower Heating Value [Btu/lb]	18,342	31,594	0	0	0	18,957	0
Heat Flow (LHV Basis) [MMBtu/hr]	263.29	64.52	0.00	0.00	0.00	34.47	0.00

Heat Flow (LHV Basis) [MMBtu/hr]	263.29	64.52	0.00
Stream Designation	MF5	MF6	MF7
Street Description	Nambaba Dradust	CDV Droduct	MF Bottoms
Stream Description	Naphtha Product	SPK Product	Recycle to HCL
Property [Units]			
Pressure [psig]	0.00	0.00	50.00
Vapour Fraction	0.01	0.00	0.00
Temperature [F]	100.00	100.00	250.14
Volumetric Flow			
-Liquid (Actual GPM)	8.29	33.49	28.26
-Liquid (std barrels/day)	276.98	1124.95	878.77
-Gas (MMSCFD)	0.00	0.00	0.00
-Gas (ACFM)	2.91	0.00	0.00
Molar Flow [lbmole/hr]	30.28	73.88	32.63
Mass Flow [lb/hr]	2710.22	12303.52	10239.72
-Vapor	25.70	0.00	0.00
-Liquid	2684.52	12291.50	10239.72
-Aqueous	0.00	12.02	0.00
Molecular Weight	89.52	166.54	313.78
Lower Heating Value [Btu/lb]	18,710	18,401	18,263
Heat Flow (LHV Basis) [MMBtu/hr]	50.71	226.40	187.01

Heat Exchange Network and Heat Recovery Steam Cycle Process Flow Diagram

Heat recovery steam cycle gross output: 36.8 MW_e