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SOME FACTS ABOUT CEMENT

CaCO3,

SiO2

Portland Cement 

ProductionClinker:  3CaO·SiO2

Fuel

~1400°C
CO2 sources:

• Chemistry ~ 55%

CaCO3 � CaO + CO2

• Fuel ~ 45%

Total ~0.8 t / t clinker
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Global Cement 

Production 1970 - 2050
SOME FACTS 

ABOUT CEMENT

THE HIDDEN DETAILS

• Cement manufacture makes up 5-

8% of all CO2

• Second most used material next to 

WATER 

• ~ 0.8-0.9 ton of CO2 per 1 ton of 

cement 

• Market to double by 2050

Alternatives to ordinary Portland cement (OPC) are required to meet 

the VAST MAJORITY of cement in  concrete.

No Change

OPC 

‘Best 

Practice’

60% reduction 

from 2008 levels
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ALKALI-ACTIVATED CONCRETE (GEOPOLYMERS)

Fly Ash

Metallurgical Slags

Natural 
Pozzolans

Alkaline 
Activator

Cementitious 
Components

Binder for 
Concrete
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COMMERCIALIZATION OF ALKALI-ACTIVATED 

CONCRETE

• Late 1950s - Glukhovsky in Kiev 

developed alkali activated binders, 

followed by Krivenko, who 

constructed slag AAC structures 

and a high rise building in Russia in 

the 1960s.

• Davidovits coined term geopolymer

in the 1970s.

• Today many universities research 

alkali-activated concrete 

(geopolymers), but still little 

commercial activity.  

• Specific research-related road blocks

Regional Rail Link Project, Melbourne
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RESEARCH ON ALKALI-ACTIVATED MATERIALS

Gel Pores: 

Neutron Small-

Angle 

Scattering

Nanostructural Ordering:

Synchrotron Diffraction

In situ Carbonation: 

Synchrotron Diffraction

Permeability:

Beam-Bending Technique

Nanocrystalline

Less Nanocrystalline

Amorphous

White et al., Cement and Concrete Research, 2015.

Microcracking:

Image Analysis

2cm
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SUSCEPTABILITY TO MICROCRACKING

• Certain mix designs of alkali-activated pastes are prone to crack

– Known as microcracking

– Different form of cracking compared to cracks induced due to loading

(tension in reinforced concrete)

– Microcracking increases susceptibility to chemical degradation

Sumajouw and Rangan, 2006

3m
2cm

Cracking in reinforced concrete due to bending
Microcracking in 

alkali-activated slag paste
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MICROCRACKING IN ALKALI-ACTIVATED SLAG 

PASTES
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CAUSE(S) OF MICROCRACKING

• Microcracking is induced by non-uniform shrinkage of the paste

• Possible causes of shrinkage include:
– Autogenous (water in pores consumed by reaction)

– Plastic (evaporation of water prior to setting)

– Drying (evaporation of water at any stage)

– Carbonation (dissolution/precipitation of phases due to reaction with CO2)

CO2 N2

O2

Ar
Carbon Dioxide

Air (in laboratory)

Nitrogen

CO2

N2
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THEORY OF CRACKING DUE TO DRYING

• Evaporation of water from pores causes a build up in

capillary pressure

• Initially the evaporation does not empty the capillary pores

inside the paste
– Overall paste dimensions can be reduced

• Later stage involves menisci retreating into the body

– Can reach high capillary pressure �� =
����

�	

– Possible to induce microcracking Image courtesy of George Scherer

10



11

LINK WITH PORE SIZE DISTRIBUTION

Mercury Intrusion 

Porosimetry
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POTENTIAL SOLUTIONS TO MICROCRACKING

• Shrinkage reducing admixtures

– Reduces the surface tension between air/water

– Do not work for alkali-activated materials,

unless at extremely high concentrations

• Crack bridging using reinforcement

– e.g., Fibers

• Extended curing conditions

S
o

li
d

Water

Air

http://www.fhwa.dot.gov/

pavement/pccp/pubs/0600

3/
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MITIGATING CRACKING WITH NANOPARTICLES?

• Nanoparticles currently used in concrete to:

– Increase the rate of hydration

– Increase the early age compressive strength of paste/concrete

– Photocatalytic properties (nano-TiO2)

– Bridge cracking (using carbon nanotubes)

• Potential for nanoparticles to:

– Alter the paste pore structure (reduce pore size so evaporation occurs only at

extremely low RH)

– Act as seeds to increase the nanostructural ordering of the paste (increase

stiffness)

• In this study, we used ZnO nanoparticles (~ 35nm)

– Stable in high pH solutions (compatible with alkaline activators)

– Low cost (~ 1% increase in price of concrete)

– Readily available (used in sunscreen and in solar cells)
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EFFECT OF NANOPARTICLES ON MICROCRACKING
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EFFECT OF NANOPARTICLES ON MICROCRACKING
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IMPACT OF NANOPARTICLES ON PORE SIZE

16

Nitrogen Sorption
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EFFECT ON PASTE STIFFNESS
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EFFECT ON RATE OF HYDRATION
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CONCLUSIONS

• Silicate-activated slag paste is prone to extensive

microcracking

– Issue for commercialization, since silicate-activated pastes have

advantageous early strength properties

• Conventional approaches to mitigating microcracking in

concrete do not work for alkali-activated systems

• 0.1% wt. of nanoparticles (nano-ZnO) are seen to decrease

the extent of surface microcracking

– Does not appear to correlate with the pore size, paste stiffness or

rate of hydration (strength development)
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FUTURE WORK

• Use imaging (electron microscopy) to see if the pore walls

are affected by the nanoparticles

– Possible that the nanoparticles increase pore wall roughness, and

prevent the evaporation of water within the pores (liquid

evaporates at surface)

• Assess if nanoparticles are clogging pores at surface

– Impact rate of evaporation

• Investigate the impact of dosage

– Working with very small amounts (0.1% wt.) compared to

conventional usage of nanoparticles in concrete (~ 5-10% wt.)
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