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Frequency regulation

® PJM sends charge/discharge signals to generators every 2
seconds to smooth out frequency/voltage variations

Frequency regulation signal
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Solar from PSE&G solar farms
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Energy from wind

L
a Wind power from all PJM wind farms
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Energy from wind

L
a Wind from all PJM wind farms
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Wind energy in PJIM

® Total load vs. total current wind (January)
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Winter load and solar

® Total PJM load plus factored solar (January)
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Wind energy in PJIM

Total PJM load plus actual wind (July)
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Summer load and wind

Total PJM load plus actual wind (July)
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99.9 percent from renewables!

Cost-minimized combinations gbwetrdQower, solar power and electrochemical
storage, powering the grid up (o 99.9% o) the time

Cory Budischak*"*, DeAnna Sewell , Heather Thomson %, Leon Mach?, Dana E. Veron®,

Willett Kempton *%*¢

* Depariment of Elxirical and Compuier Engineering, University of Deloware, Mewark, DE 19716, USA

B Department of Energy Manggement, Deloware Tarhni ol Commamity College, Mewark, DE 8713, UEA

= Cemier fior Carbon-Free Power Integration, $fchoaol of Marine Stenee and Policy, Gollege of Barth (cean and Emdronment, Universily of Dakoware, Mewark, DE 19716, LSA
9 Energy and Environmental Folicy Progmm, Coll e of Engineering, University of Delawarnes, Newark, DE 197185, LSA

* Gmier ffor Electric Terhnolagy, DT Elsctro, Danmarnks Teknicks Unnersit=t, Kzs. imghy, Denmark

HIGHLIGHTS GCGRAPHICAL ABSTRACT

B We msdeled wimd, solar,  amd

. 200 3 i T
storage to meet demand for 15 of wind & s il w.m‘
the USA electric grid solar 5 _ Ji:
L)

e 2E billion combinations of wind,

. 1000
solar and Sorage were run, seeking . L kit R A T e
| east-cost. Battery o | 1 , | Tr
» Least-cost combinations have excess Storage = :
genemabion (3= load |, thus regquire -
less storage. i z
£
» S9.9% of howrs of load can be met by Fossil I
renewables with only 9—72 h of backup
SIAge.
- At ;%3!: technology costs, 0% of Jan WEE  Jul 1B Jan2 . Jan 2001 July 205 Jan 2002
load hviars are met at aleciric costs i row wens it il ensuosibs panscainn aod dicoage 39 55 of o e 4 pruecs lnied havkup reacbed cn B niresions

bl o todanys







Research challenges
L

® How do we control a battery storage system? Challenges
Include:

» Managing a single storage device to handle multiple revenue
streams, over multiple time scales

» Controlling a storage system in the presence of a multidimensional
“state of the world”

» Controlling dozens to hundreds of storage devices spread around
the grid.
® How do we design storage systems?
» What type of storage device(s)?
» How many are needed?
» How should they be distributed across the grid?

® How does storage change the economics of renewables?



Revenue streams

@ Frequency regulation seconds
® Power quality management minutes
® Battery arbitrage
@ Energy shifting hours
® Demand peak management - Many
utilities impose charges based on peak days-weeks
usage over a month, quarter or even a
year. weeks-months
® Peak management for avoiding capacity
expansion

months-years
® Backup power for outages y




Research goals
L

® To design an algorithm that produces near-optimal policies
that handle the following problem characteristics:

»

»

»

»

»

»

»

»

Responds to predictable time-dependent structural patterns over
hourly, daily and weekly cycles in generation and loads.

Able to simultaneously optimize over multiple revenue streams,
balanced against maximizing the lifetime of the battery.

Able to handle time scales ranging from seconds to minutes, hours
and days.

Handles uncertainty in energy generation, prices and loads.

Handles “state of the world” variables such as weather conditions,
network conditions and prices.

For some applications, we need to scale to large numbers (tens to
hundreds, but perhaps thousands) of grid-level storage devices.

Ability to incorporate forecasts of wind or solar energy, loads, and
weather.

Needs to be computationally very fast.



A storage problem

® Energy storage with stochastic prices, supplies and demands.
Wind speed
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A storage problem

® Bellman’s optimality equation
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Managing a water reservoir

B
® Backward dynamic programming in one dimension

Step O: Initialize V; ,(R;,,)=0forR;,; =0,1,...,100
Step 1. Step backwardt=T,T -1,T -2,...
Step 2: Loop over R, =0,1,...,100
Step 3: Loop over all decisions 0 < x, <R

Step 4. Take the expectation over all rainfall levels (also discretized):
100

Compute Q(R,, %) =C(R,, %)+ D_V,.,(min {Rm"‘x, R — x+w})PW (W)

End step 4;
End Step 3;
Find V" (R)) = max, Q(R,,x,)
Store Xt”* (R)=argmax, Q(R,,x,). (This s our policy)
End Step 2;
End Step 1;




Managing cash in a mutual fund

® Dynamic programming in multiple dimensions
Step O: Initialize V; _,(S;,,) =0 for all states.
Step 1. Step backwardt=T,T -1, T -2,...

Step 2: Loop over S,=(R,,D,, p,,E,) (four loops)

Step 3: Loop over all decisions x, (a problem if x, is a vector)

Step 4: Take the expectation over each random dimension (Iﬁt, P, ét)

Compute Q(S,,x,) =C(S,, %)+
100 100 100

ZZZ t+1( St’xt t+1 (W1’W2’W3)))PW(W1,W2,W3)

w; =0 w, =0 w3 =0

End step 4;
End Step 3;

Find V" (S,) = max, Q(S,, %)
Store Xt”* (S,) =argmax, Q(S,,x). (Thisisour policy)
End Step 2;
End Step 1;
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Approximate dynamic programming

B ]
® Bellman’s optimality equation

» We approximate the value of energy in storage:

V,(S,) =min, . (C(S,, %)+ V" (8! (S0, %))
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Approximate dynamic programming

® We update the piecewise linear value functions by
computing estimates of slopes using a backward pass:
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Approximate dynamic programming

® Testing on a deterministic problem demonstrates that we
can precisely capture optimal time-dependent behavior:

Storage profile at iteration 1 - Markov-like6
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Approximate dynamic programming

® Benchmarking against optimality on a stochastic model
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Approximate dynamic programming

® Benchmarking against optimality on a stochastic model
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Grid level storage control

Slide 26



Grid level storage control
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Grid level storage control
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Grid level storage control
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Grid level storage control

® Approximate dynamic programming (blue) vs. optimal
using linear programming (green)
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Heterogeneous fleets of batteries

Flywheels - Ultracapacitors |



Heterogeneous fleets of batteries

@ A tale of two batteries
» Ultracapacitor — High power, high efficiency, low capacity
» Lead acid — Lower power, lower efficiency, high capacity
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Heterogeneous fleets of batteries
L

® Control algorithm adapts to characteristics of each storage
device

Cumulative distribution

Time (hours) energy is held in storage device



Handling multiple time scales

Llly (hourlyln&rements) |2 V(S;) =min, C(S Xt)‘}fVEV(St+1 I[ ‘[
:f L

Hourly (5-min. increments) V(S,)=min, _ (C(S;,x)+7EV(S,,)

0 5 10 15 20 55 60




Handling multiple time scales

Llly(hourly m&rements) b V(S) = m'”xex (CES:, Xt)+7/EV(St+1 I/ ‘/
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Handling multiple time scales

A —
Daily (hourly increments) b V(S,) =min, _, (C(S,, Xt)+7/EV(St+1 |[ ‘[

0 1 2 l|’> 4
|

5 min (2-sec. increm Vi

There are 43,200 2-second increments in a day, over 300,000 in a week.
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Our model, “SMART—Storage”
simultaneously optimizes the
ramping of generators as well as
storage.
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Solar-storage experiments

Ixed sun/cloud

Storage
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Sunny day

Cloudy day

Solar = 2.3GW
Storage = 12Gwh/600MW
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Solar-storage experiments

Load covered by solar %

Storage Solar capacity
Capacity 23MW  230MW 2.3GW 11.5GW 23GW

OMWh 0.007 0.07 0.74 245 4. 82
12MWh 0.007 0.07 0.74 256 4.04
120MWh 0.007 0.07 0.74 254 401
1.2GWh 0.007 0.07 0.74 251 4 80
6GWh 0.007 0.07 0.74 240 4 87
12GWh 0.007 0.07 0.74 247 4. 84

T % of solar used

Storage Solar capacity
Capacity  23MW 230MW 2.3GW 11.5GW 23GW

OMWh 00.33 08.63 05.20 82.31 63.50
12MWh 00.40 08.64 06.70 83.53 64.66
120MWh 00.44 08.66 05.75 83.30 64.30
1.2GWh 00.09 08.70 05.66 82.07 04.24
6GWh 00.00 08.66 05.68 82.85 64.12
12GWh 00.09 08.04 05.54 82.54 04.03



Solar-storage experiments

B
® Some conclusions:

»

»

»

The model will only put energy in storage when storage is the only
way to meet fast variations in generation and loads.

The reason is the losses that are incurred when converting energy
Is stored. It is always better to ramp down a generator during
periods of high energy generation from wind or solar, than to store
the energy and use it better.

The idea that the conversion losses do not matter when the
energy is free is a myth.... It only applies when the total
generation from renewables exceeds the total load (which was
never the case in our experiments).



Research goals

® To design an algorithm that produces near-optimal policies
that handle the following problem characteristics:

»
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»
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v

Responds to predictable time-dependent structural patterns over
hourly, daily and weekly cycles in generation and loads.

Able to simultaneously optimize over multiple revenue streams,
balanced against maximizing the lifetime of the battery.

Able to handle time scales ranging from seconds to minutes, hours
and days.

Handles uncertainty in energy generation, prices and loads.

Handles “state of the world” variables such as weather conditions,
network conditions and prices.

For some applications, we need to scale to large numbers (tens to
hundreds, but perhaps thousands) of grid-level storage devices.

Ability to incorporate forecasts of wind or solar energy, loads, and
weather.

Needs to be computationally very fast.



Thank you!

For more Information see:

http://energysystems.princeton.edu
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