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Frequency regulation 
PJM sends charge/discharge signals to generators every 2 
seconds to smooth out frequency/voltage variations 

1 hour 

M
W

 



Solar from PSE&G solar farms 
Solar from a single solar farm 
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Energy from wind 
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 Wind power from all PJM wind farms 
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Energy from wind 

30 days 

 Wind from all PJM wind farms 



Wind energy in PJM 
Total load vs. total current wind (January) 



Winter load and solar 
Total PJM load plus factored solar (January) 



Wind energy in PJM 
Total PJM load plus actual wind (July) 
 



Summer load and wind 
Total PJM load plus actual wind (July) 
 



99.9 percent from renewables! 
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Research challenges 
How do we control a battery storage system?  Challenges 
include: 
» Managing a single storage device to handle multiple revenue 

streams, over multiple time scales 
» Controlling a storage system in the presence of a multidimensional 

“state of the world” 
» Controlling dozens to hundreds of storage devices spread around 

the grid. 

How do we design storage systems? 
» What type of storage device(s)? 
» How many are needed? 
» How should they be distributed across the grid? 

How does storage change the economics of renewables? 



Revenue streams 
Frequency regulation 
Power quality management 
Battery arbitrage 
Energy shifting 
Demand peak management - Many 
utilities impose charges based on peak 
usage over a month, quarter or even a 
year.  
Peak management for avoiding capacity 
expansion 
Backup power for outages 
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Research goals 
To design an algorithm that produces near-optimal policies 
that handle the following problem characteristics: 
» Responds to predictable time-dependent structural patterns over 

hourly, daily and weekly cycles in generation and loads. 
» Able to simultaneously optimize over multiple revenue streams, 

balanced against maximizing the lifetime of the battery. 
» Able to handle time scales ranging from seconds to minutes, hours 

and days. 
» Handles uncertainty in energy generation, prices and loads. 
» Handles “state of the world” variables such as weather conditions, 

network conditions and prices. 
» For some applications, we need to scale to large numbers (tens to 

hundreds, but perhaps thousands) of grid-level storage devices. 
» Ability to incorporate forecasts of wind or solar energy, loads, and 

weather. 
» Needs to be computationally very fast. 



A storage problem 
Energy storage with stochastic prices, supplies and demands. 
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A storage problem 
Bellman’s optimality equation 
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Managing a water reservoir 
Backward dynamic programming in one dimension 
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Managing cash in a mutual fund 
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Dynamic programming in multiple dimensions 





Approximate dynamic programming 
Bellman’s optimality equation 
» We approximate the value of energy in storage: 

( )( )( ) min ( , ) ( , )
t

x x
t t x t t t t t tV S C S x V S S xγ∈= +X

Inventory held over from 
previous time period 



Approximate dynamic programming 
We update the piecewise linear value functions by 
computing estimates of slopes using a backward pass: 
 
 
 
 
 
 
» The cost along the marginal path is the derivative of the simulation 

with respect to the flow perturbation. 

Rδ



Approximate dynamic programming 
Testing on a deterministic problem demonstrates that we 
can precisely capture optimal time-dependent behavior: 



Approximate dynamic programming 
Benchmarking against optimality on a stochastic model 
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Storage problem 



Approximate dynamic programming 
Benchmarking against optimality on a stochastic model 
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Grid level storage 
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Grid level storage control 
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Grid level storage control 
Monday 



Time :05 :10 :15 :20 
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Grid level storage control 
Monday 
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Grid level storage control 
Monday 
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Grid level storage control 
Approximate dynamic programming (blue) vs. optimal 
using linear programming (green) 



Heterogeneous fleets of batteries 
 



Heterogeneous fleets of batteries 
A tale of two batteries 
» Ultracapacitor – High power, high efficiency, low capacity 
» Lead acid – Lower power, lower efficiency, high capacity 

Lead acid 

Ultra capacitor 



Heterogeneous fleets of batteries 
Control algorithm adapts to characteristics of each storage 
device 

Time (hours) energy is held in storage device 
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Handling multiple time scales 
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Daily (hourly increments) 
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Handling multiple time scales 
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Handling multiple time scales 

0 .  .  . 1 2 3 3 4 23 24 

0 5 10 15 20 55 60 . . . 

Daily (hourly increments) 

Hourly (5-min. increments) 

There are 43,200 2-second increments in a day, over 300,000 in a week. 
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Solar energy 
Princeton solar array 

What is the value of storage 
in managing the variability 
from renewables?  



Our model, “SMART-Storage” 
simultaneously optimizes the 
ramping of generators as well as 
storage. 



Solar-storage experiments 
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Solar-storage experiments 

23MW 230MW 2.3GW 11.5GW 23GW 

23MW 230MW 2.3GW 11.5GW 23GW 

   Solar capacity    

   Solar capacity    

                    Load covered by solar %         

                    % of solar used         



Solar-storage experiments 
Some conclusions: 
 
» The model will only put energy in storage when storage is the only 

way to meet fast variations in generation and loads. 
» The reason is the losses that are incurred when converting energy 

is stored.  It is always better to ramp down a generator during 
periods of high energy generation from wind or solar, than to store 
the energy and use it better.   

» The idea that the conversion losses do not matter when the 
energy is free is a myth…. It only applies when the total 
generation from renewables exceeds the total load (which was 
never the case in our experiments).   



Research goals 
To design an algorithm that produces near-optimal policies 
that handle the following problem characteristics: 
» Responds to predictable time-dependent structural patterns over 

hourly, daily and weekly cycles in generation and loads. 
» Able to simultaneously optimize over multiple revenue streams, 

balanced against maximizing the lifetime of the battery. 
» Able to handle time scales ranging from seconds to minutes, hours 

and days. 
» Handles uncertainty in energy generation, prices and loads. 
» Handles “state of the world” variables such as weather conditions, 

network conditions and prices. 
» For some applications, we need to scale to large numbers (tens to 

hundreds, but perhaps thousands) of grid-level storage devices. 
» Ability to incorporate forecasts of wind or solar energy, loads, and 

weather. 
» Needs to be computationally very fast. 



Thank you! 
 
 
 

For more information see: 
 

http://energysystems.princeton.edu 
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