## Sustainable Cements Challenges and Opportunities

Assistant Professor Claire E. White

Department of Civil and Environmental Engineering, and the Andlinger Center for Energy and the Environment

Princeton University

Associated Faculty: Princeton Environmental Institute Department of Chemical and Biological Engineering Department of Mechanical and Aerospace Engineering Princeton Institute for Science and Technology of Materials Princeton Institute for Computational Science and Engineering



## Concrete, Sustainability and Society

Concrete is the top engineering material contributing to anthropogenic  $CO_2$  emissions: ~8%

~95% of all concrete used around the world is based on Portland cement

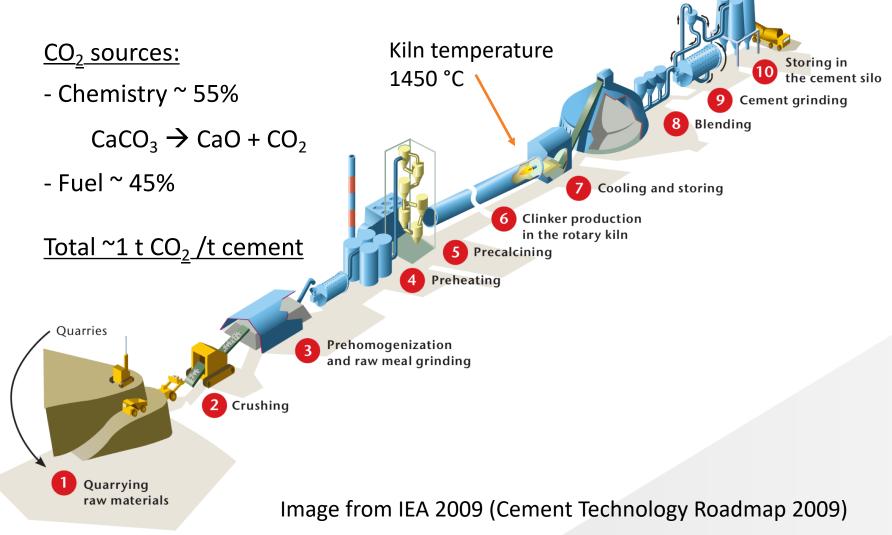
4.1 billion tons of cement manufactured in 2017 (USGS)

- $^{\circ}$  ~1 ton of CO<sub>2</sub> released into atmosphere per ton of cement
- Also important to assess energy and water (for concrete) requirements



Portland Cement Powder




Potable Water





**Binder for Concrete** 

## **Cement Manufacturing**



### Methods to Mitigate Energy and CO<sub>2</sub> Impact

Carbon capture and storage

Any new cement plant should have associated CCS plant (\$\$)

Clinker substitution

 Need to understand the structure and reactivity of industrial by-products and processed minerals

Alternative fuels (e.g., biomass)

**Energy efficiency** 

• Large cost but low savings in CO<sub>2</sub> emissions

Outlined by International Energy Agency

# Cumulative CO<sub>2</sub> Emissions Reduction from 2020 to 2050 (2 °C Scenario, Low Variability)

| *<br>*                         | 0<br>0                             | •                |             |
|--------------------------------|------------------------------------|------------------|-------------|
| Innovative technologies – La   | irgely carbon o                    | apture and stora | ge          |
|                                | 0<br>0                             |                  |             |
| Clinker substitution           |                                    |                  | 0<br>0<br>0 |
| Alternative fuels (e.g., bioma | ass)                               |                  |             |
| Energy efficiency              | •                                  | 0<br>0<br>0      | 0<br>0<br>0 |
|                                | Total reduction = 7.7 Gt of $CO_2$ |                  |             |
|                                | •                                  |                  | 0           |
| 0 1 000<br>MtCO <sub>2</sub>   | 2 000                              | 3 000            | 4 000       |

Beyond 2 °C Scenario: Total reduction = 10.9 Gt of  $CO_2$ 

### Methods to Mitigate Energy and CO<sub>2</sub> Impact

Carbon capture and storage

Any new cement plant should have associated CCS plant (\$\$)

Outlined by International Energy Agency Clinker substitution

 Need to understand the structure and reactivity of industrial by-products and processed minerals

Alternative fuels (e.g., biomass)

**Energy efficiency** 

• Large cost but low savings in CO<sub>2</sub> emissions

Innovative disruptive technologies

Alternative cementitious materials

## Status Quo

Modern day construction relies heavily on Portland cement concrete

- Reproducible quality around the world
- Heavily controlled by construction standards/codes

The main binder responsible for strength of concrete (and contributes to durability) is calcium-silicate-hydrate

 Altering the chemistry of the binder may change macroscopic properties (seen as a risky approach)

Conservative approaches making a dent on the CO<sub>2</sub> emissions

- Clinker substitution (for example, limestone-calcined clay cements)
- Still based on Portland cement chemistry

## Innovative Disruptive Technologies

Eliminate the need to produce Portland cement clinker

### **Examples include**

- Alkali-activated materials
- Carbonate cements
- Calcium aluminate cements
- Super sulfated cements
- Calcium sulfoaluminate cements

•

## Varying levels of CO<sub>2</sub> reduction compared with Portland cement

Challenge to make inroads in an ultra-conservative industry

## **Alternative Cements - Commercialization**

Alkali-activated concrete Carbonate concrete



## 89% reduction of Portland cement using alkali activation

### Calcium sulfoaluminate concrete

http://solidiatech.com/applications/; https://ctsrapidsetcement.com.au/gallery-videos/ 9

## Alkali-activated Concrete



**Metallurgical Slags** 



Fly Ash



Calcined Clays



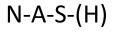
Aluminosilicate Rich Powders



#### Alkaline Activator






#### Binder for Concrete

### **Binder chemistry**

Calcium-(sodium)-alumino-silicate-hydrate C-(N)-A-S-H

- Alkali-activated high-Ca materials (e.g., blast furnace slag)
- Sodium-alumino-silicate-hydrate
  - Alkali-activated low-Ca materials (e.g., calcined kaolin)

~40-80% reduction in CO<sub>2</sub>





### **Cement Notation**

## Role of Fundamental Research

Long-term performance of certain blended Portland cements and AAMs is not well established

 Do not have 150 years of data on sustainable cements, in contrast with Portland cements

### Need to predict long-term performance

 Key role of fundamental research (including modeling across length scales) to provide this information

### Long-term performance is linked to material durability

- Performance can be compromised due to *instabilities* in the atomic structure of the main binder gel
- Performance is lost due to material degradation, which is controlled by the concrete *pore structure (and permeability)*