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Population Explosion

Population (in Billions)

9-11 Billion
(2050)

10

6.7 Billion
(2008) :
Haber-Bosch
(1913)

More developed countries
g =
~

Chemistry eradicated world hunger, starvation is mostly political, economic...

g8

1850
YO
950

2000

2150
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W

Calibration: One Haber-Bosch plant makes 1 ton NHs per minute!

B 2-3% of the world’s energy supply

B Transportation: 30%, lighting: 7%

B Distillation: 10-13%

7

N

Nitrogen

Supports 50% of the world’s population 60% of the N atoms in the human body
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Industry versus Nature

What is more energy efficient?

Nitrogenase Enzymes

enzyme
N, + 8¢ + 8H* /y\r 2NH; + Hy + 16 P;
16 ATP 16 ADP
23 °C, 1 atm

Chemical Overpotential = 1.2 V!

Haber-Bosch Process

Fe/Ru on Al,O4
N, + 3H, = = 2 NHj
400 °C, 400 atm

Chemical Overpotential =0.55 V

BASF, Ludwigshafen



A Closer Look at Haber-Bosch

Bosch (1932): “Improvements to the catalyst will have minimal impact” (still true today).



A Closer Look at Haber-Bosch

Bosch (1932): “Improvements to the catalyst will have minimal impact” (still true today).

Water  co, Assumed:
Air 656 tpd 1140tpd 600kg nat. gas/tonne NH;
" : 6
Nat. gas: Nat. gas price U.S. $3/10° BTU
reactant, Haber-Bosch synthesis loop
heating N, === === - - s —— - - :

Steam 824tpd Recycle H,, N, 11000tpd
414tpd= ( reforming 172; d: Syngas [:alsvn. Loop ~200 ba:‘ :a nhydrous
209Mw | p Watergas | 0B, | Compressor [ [ { g NH, jlammonia

( shift —p ~1OMW > | —
CO, scrub. |__:-: | h reactors | | Condensation | ¢ $90/
Methanation L th ~31IMW > Yionne NH
ESyngas _______ i i : EEIOMW heat of}gt_leaction 6'?1}” : (Nat. gas, for3
Combustion T A—— 0L
I l IL Steam (plant-wide energy integration) :as reactant)

Air Nat.gas  CO2
(heatfor 512tpd
steam reforming)

186tpd=112MW

Bl H-B Catalyst is only ~8% of the energy! Most in the H2 synthesis.

Pfromm, P. H. J. Renew. Sus. Energy 2017, 9, 034702.
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Why Study Ammonia Synthesis?

It Has a Carbon Footprint!

Fe/Ru on Al,O4

N2 +3H2< >2NH3

400 °C, 400 atm

B 600 kg of CO; per 1000 kg NHs.

B 7% of global CO2 emissions.

H-B Is Capital Intensive

Bl Capital Investment: ~$1B + infrastructure

B Break even: 7 years; Total lifetime: 15-30 years

Coal

Natural Gas

Gas: 2.1t CO2/t NH3

60 % Coal: 3.3t CO2/t NH;

Fuel Oil
Naphtha
Others

Unidentified

H-B for the Developing World

Bl Batch (not flow) synthesis.

Bl Intermittent (renewable) Ha.

Bl New catalysts are needed!




The Case for Ammonia as a Fuel

NHs as a Hydrogen Carrier

2 NH 4

>N2+

3 Hy

Low ED/V

40

Energy Density (MJ/L)
—_ —_ N N w w
(&) o (6} o (62 (@) (O3

o

W gasoline

= ethanol

B propane (14 bar)

B8 ammonia (10 bar)

W methanol o methane (250 bar)

batteries

20

40

hydrogen (700 bar)

60 80 100 120
Specific Energy (MJ/kg)

140

160



The Case for Ammonia as a Fuel

NH3 as a Hydrogen Carrier 40

w
6)

M gasoline

2 NH 4 - N, + | 3H,

W
o

N
(63

Low ED/V B ethanol

N
o

B propane (14 bar)

—
(62

B ammonia (10 bar)

W methanol o methane (250 bar)
hydrogen (700 bar)

NH3 as a Fuel batteries .

Energy Density (MJ/L)
o

)

o

0 20 40 60 80 100 120 140 160
Specific Energy (MJ/kg)

4NH; + 30, = 2N, + 6 H,0

X-15 Aircraft (Supersonic) Belgian Buses (WWII)
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Ammonia Synthesis

H
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H

What are N-H bond strengths?

What are the optimal reagents for promoting efficient N-H bond formation?



Overview of Today’s Talk: PCET for N-H Formation and Breaking

Ammonia Synthesis

H

. + (H* + e) . /I_I + (H* + e) /
[IM]—N =N » [M]—N=N >[M]=N—N\
H

What are N-H bond strengths?

What are the optimal reagents for promoting efficient N-H bond formation?

Hydrogen Evolution
H
[M]—N=—=H » [M]—NH, + | H—H
\H

What does this value need to be for H> loss?

How do we enable “bond weakening by coordination”?



A Fundamental Chemical Challenge

t Mo. .,
BUSN- N\ NBUAr

f NBuAr

BDFE = 41 kcal/mol

( )
H,
N
thT th
Lomes
th N th
Kll
BDFE = 23 kcal/mol
\_ _J

==

Many N-H bonds are <49 kcal/mol (weak!). How do we overcome thermodynamic limitations?

-

BDFE = 43 kcal/mol

_J

. Blue light: ~ 55 kcal/mol
Y r



Proton Coupled Electron Transfer

e_

transfer
/\ PCET 1 Protons and electrons are exchanged
—_----- . m— n— o --=-=-=-- _—
R—H ‘B = M R H—B® together in a concerted elementary step
"/
H+

transfer
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e_
transfer

: ’/\ PCET Protons and electrons are exchanged

————— ° m— —1
R—H \—/-B ~ M" ‘R------ H—B® together in a concerted elementary step
H+
transfer
Improved Kinetics
. H* mechanism:
PT/ET
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Energy
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Proton Coupled Electron Transfer

e_

transfer
7N PCET
e
LN
H+
transfer
Improved Kinetics
A o+ mechanism:
PT/ET
ET/PT

PCET

Energy

Mn—1

Reaction Coordinate

Protons and electrons are exchanged
together in a concerted elementary step

Prevalent in Biology (PSIl, RNR, lipoxygenases, etc)

histdine 190

HN/§/His HN/§/His
=/ \—
\\\ Tyr
(@) ‘o—< >_/

Y
Y

PT\__H, S Tyr

T
tyrosine Z ket ~ 1 x107 571 tyrosyl radical
ET
proton-coupled
electron transfer
| o+
Me Me Me
.‘\\R

Me

Me Me

chlorophyll
P680*

* H-bonding lowers the potential of the phenol by ~ 450 mV

* Removal of His190 renders PSIl completely inactive



Light Driven, Multi-Site Reduction PCET

Hydrogen Atom Donor Pairs

H+ ® Reductant Acid E,(V)  pK, ‘BDFE
H—B .B
H
\ NT Cp,Co PhCO,H -1.34 21.5 54
I PCET I
= — S| Cp*,Co lutidinium -1.47 14.1 40
R2N\MO_NR2 2 \/MO_NRQ
RQN/ @ RoN Ru'(bpy), pyridinium -1.71 2.5 33
Mn+1
© Ru'(bpy); pTSA -1.71 8.6 27
S - . 1 1
AG° = N-H BDFE PCET 'BDFE e (ppy); (PhO),PO,H Y 3 o4

Challenging N-H bonds can be achieved by choice of reductant and acid.

We will rely on photocatalyst to convert light energy to redox potential.

Bordwell, F. G.; Zhang, X.-M. Acc. Chem. Res. 1993, 26, 510-517.
Warren, J. J. Tronic, T. A. Mayer, J. M. Chem. Rev. 2010, 110, 6961-7701.

Wang, Knowles, Chirik unpublished



Targeting a More Robust Complex

H

4

N N

Il +H' I
=0 0> - O=pin-O
=N~ "N= AG = -60 kcal/mol =N~ TN=
u

— (AG = -51 kcal/mol)
S=0 S=3/2
(S=1/2)

+H° lAG = -84 kcal/mol

R 'H\H H H
¢ - w
=M 0D ~— =0 0>
=N~ N= AG = -85 kcal/mol =N~ N=
N/ N/
S - 5/2 S — 2

First N-H bond formation transfer is the most challenging in N-H formations step.

Wang, Knowles, Chirik unpublished



Successful Ammonia Synthesis

‘Bu lﬂ ‘Bu

| 5% Ru(bpy)s(PFe)2
t e t
Bu . O/Mn\op Bu 10% NMesH* BF,-

N N + acrH, » | NH3 + [Mn]®? + acr

C blue LED
THF, 23 °C

Change to Reaction Condition NH;%
N 2 dark 0
H

acrt; 3 no Ru, no NMe;H BF, 3
O A O 4 no NMe;H BF, 5
NZ 5 no Ru 15

acr :
6  Hantzsch ester instead of acrH, 10
7 CH,Cl, as solvent 57

Light, acid, reductant and photocatalyst are all required for NH; synthesis.

Wang, Knowles, Chirik unpublished



Why 57% Yield and Where is the Manganese Going?

CO
Bu N Bu > | NHj; (30%)

Il
t - - t
B“QO/MH\O:Q_ Bu 1], hy
=] \| \N_ > [Mn]red |
b ~He B TMEDA

Total NH3: 57% (free) + 42% (bound) = 99%

> | NHj (42%)



Why 57% Yield and Where is the Manganese Going?

tBUQ

Fate of the Mn:

CcO
m Bu
-~ - t
O/MH\O_Q BU - [H), hy
N N » | [Mn]®d —
‘ — NH3 (57%)
TMEDA

> | NH; (30%)

Total NH3: 57% (free) + 42% (bound) = 99%

[H], Ay tBu  NHs tgy

> |'Bu O-Mn-O Bu
- 57% NHs =N S N=

C,Clg

> | NHj (42%)

‘Bu CI 'Bu

-

aqg. NHs,
bleach

or NCS |
> By O-Mn-O ‘Bu
_N/ \N_

(UV-Vis)

87-92%
(from starting MnN)

Mass balance: NH3 (99%) + Mn (~90%)



Comparison of Catalyst Pairs with Varied BDFEs

Il 5% redox cat.
t e t
BUQO/W\O@‘ Bu 10% acid cat.
N N + acrH, > | NH3 + [Mn]®® + acr
\ blue LED
CH,Cl,, 23 °C

redox cat. acid cat. ‘BDFE’ NH;%
| Ir(ppy)2(dtbpy)(PF,) NMe;H* BF 35 50
H 2 Ru(bpy)s(PF,), NMe;H* BF 40 57
AcrHz 3 Ru(bpy)s(PF,), PhCO,H 45 55
O N O 4 Ir(ppy)2(dtbpy)(PF,) ‘BuC,H,SO,NH, 46 50
s
a’:':r 5 Ru(bpy)y(PF), HOAC 48 20
6  Ru(bpm);(PFy), PhCO,H 55 19
7 Ru(bpm)s(PFy), ‘BuC,H,SO,NH, 59 24
8 ] ] ; 15

Wang, Knowles, Chirik unpublished



Proposed Mechanism for Ammonia Synthesis

hv Ry
NMe;H* acr
proton
transfer
Ru" Ru acrH*
NMe;H" NMe,
electron H-atom | » Mn'"NH,
acrH2 transfer transfer
Mn'VNH
Ru' acrH,” Ru' acrH, "
NMe;H* proton-coupled NMe,

electron transfer

MnYN  Mn!YNH

PCET
(Ru + HY)

> Mn''NH,
or HAT

(acrH,)

Wang, Knowles, Chirik unpublished
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Comparison of Catalyst Pairs with Varied BDFEs (in THF)

'‘Bu N Bu

Il 5% redox cat.
t e t
—N N= + acrH, > | NHj
\ blue LED
THF, 23 °C

+ [Mn]®d + acr

redox cat. acid cat. ‘BDFE’ NH;%
| Ir(ppy),(dtbpy)(PF,) NEt,HBF, 41 69
2 Ru(bpy);(PFy), NEt;HBF, 45 44
aCI;IHz 3 Ir(ppy),(dtbpy)(PF,) pCNC,H,CO,H 52 30
O A O 4 Ru(bpy);(PFy), TBDH*CI- 53 13
N7 5 Ru(bpy)s(PF,), mNO,C,H,CO,H 56 3
acr
6 Ru(bpy)s(PF,), PhCO,H 6l 8
7 Ru(bpm);(PFy), TBDH*CI- 63 5
8 Ru(bpy)s(PF,), BuC,H,SO,NH, 68 2

Wang, Knowles, Chirik unpublished



