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Chemistry eradicated world hunger, starvation is mostly political, economic…
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Ammonia: A Most Important Molecule

Calibration: One Haber-Bosch plant makes 1 ton NH3 per minute!

Supports 50% of the world’s population 60% of the N atoms in the human body

2-3% of the world’s energy supply

Transportation: 30%, lighting: 7% 

Distillation: 10-13% 
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Industry versus Nature
What is more energy efficient?

Chemical Overpotential = 1.2 V!

Nitrogenase Enzymes

  N2    +    8e-    +   8 H+
enzyme

2 NH3   +    H2  +  16 Pi

16 ATP 16 ADP
23 ºC, 1 atm

Chemical Overpotential = 0.55 V

Haber-Bosch Process

N2
    +  3 H2

Fe/Ru on Al2O3

2 NH3
400 ºC, 400 atm

BASF, Ludwigshafen
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A Closer Look at Haber-Bosch

H-B Catalyst is only ~8% of the energy! Most in the H2 synthesis.

Pfromm, P. H. J. Renew. Sus. Energy 2017, 9, 034702. 

Bosch (1932): “Improvements to the catalyst will have minimal impact” (still true today).
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60 %
27 %Natural Gas

Coal

Gas: 2.1 t CO2 / t NH3

Coal: 3.3 t CO2 / t NH3

It Has a Carbon Footprint!

N2
    +  3 H2

Fe/Ru on Al2O3

2 NH3
400 ºC, 400 atm

7% of global CO2 emissions.

600 kg of CO2 per 1000 kg NH3.

H-B Is Capital Intensive

Capital Investment: ~$1B + infrastructure

Break even: 7 years; Total lifetime: 15-30 years

H-B for the Developing World

Batch (not flow) synthesis.

Intermittent (renewable) H2.

New catalysts are needed!
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NH3 as a Fuel

4 NH3 + 6 H2O N2+ 3 O2 2

X-15 Aircraft (Supersonic) Belgian Buses (WWII)
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Overview of Today’s Talk: PCET for N-H Formation and Breaking

Ammonia Synthesis

Hydrogen Evolution

N

H

H

H

[M] NH2[M] H H+

What does this value need to be for H2 loss?  

How do we enable “bond weakening by coordination”?

What are N-H bond strengths?  

What are the optimal reagents for promoting efficient N-H bond formation? 

N[M] N
+ (H+ + e-)
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H
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H

H



A Fundamental Chemical Challenge

Many N-H bonds are <49 kcal/mol (weak!). How do we overcome thermodynamic limitations? 

Blue light: ~ 55 kcal/mol

N
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tBu
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BDFE =  23 kcal/mol BDFE =  43 kcal/mol
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H+ 
transfer
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PCET Protons and electrons are exchanged 
together in a concerted elementary step

Reaction Coordinate

En
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gy

(H+/e–)

H+
e–

H+
e–

mechanism:

PT/ET

ET/PT

PCET

Improved Kinetics Prevalent in Biology (PSII, RNR, lipoxygenases, etc)

kPCET ~ 1 x107 s-1
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electron transfer

O

N

HN His

Tyr

tyrosine Z

histdine 190

H

N N

NN

Me

Me

Me Me

Me

Mg

R
O

CO2Me

O

N

HN His

Tyr

tyrosyl radical

H
PT

ET

• Removal of His190 renders PSII completely inactive

• H-bonding lowers the potential of the phenol by ~ 450 mV



Light Driven, Multi-Site Reduction PCET

Hydrogen Atom Donor Pairs

Reductant Acid E1/2 (V) pKa ‘BDFE’

Cp2Co PhCO2H -1.34 21.5 54

Cp*2Co lutidinium -1.47 14.1 40

RuI(bpy)3 pyridinium -1.71 12.5 33

RuI(bpy)3 pTSA -1.71 8.6 27

*Ir(ppy)3 (PhO)2PO2H -2.11 13 24

Challenging N-H bonds can be achieved by choice of reductant and acid.

We will rely on photocatalyst to convert light energy to redox potential. 

Bordwell, F. G.; Zhang, X.-M. Acc. Chem. Res. 1993, 26, 510-517. 
Warren, J. J. Tronic, T. A. Mayer, J. M. Chem. Rev. 2010, 110, 6961-7701. 
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Wang, Knowles, Chirik unpublished



Targeting a More Robust Complex

First N-H bond formation transfer is the most challenging in N-H formations step.

Wang, Knowles, Chirik unpublished



Successful Ammonia Synthesis

Change to Reaction Condition NH3%

1 - 44

2 dark 0

3 no Ru, no NMe3H BF4 3

4 no NMe3H BF4 5

5 no Ru 15

6 Hantzsch ester instead of acrH2 10

7 CH2Cl2 as solvent 57

Light, acid, reductant and photocatalyst are all required for NH3 synthesis. 

N
H

acrH2

N
acr

+

5% Ru(bpy)3(PF6)2
10% NMe3H+ BF4

-

blue LED
THF, 23 ºC

[Mn]red+ +
MnO

N N
O

NtBu tBu
tButBu

acrH2 acrNH3

Wang, Knowles, Chirik unpublished
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Why 57% Yield and Where is the Manganese Going?

Total NH3: 57% (free) + 42% (bound) = 99%

MnO
N N

O
NtBu tBu

tButBu [H], hν

– NH3 (57%)
[Mn]red

NH3 (30%)

NH3 (42%)

CO

NH3 (42%)
TMEDA

Fate of the Mn:

MnO
N N

O
NtBu tBu

tButBu MnO
N N

O

tBu tBu
tButBu

[H], hν
MnO

N N
O

CltBu tBu
tButBu

aq. NH3,
bleach

C2Cl6
or NCS

(UV-Vis)

87-92% 
(from starting MnN)

- 57% NH3

NH3

Mass balance: NH3 (99%) + Mn (~90%)



Comparison of Catalyst Pairs with Varied BDFEs

N
H

acrH2

N
acr

+

5% redox cat.
10% acid cat.

blue LED
CH2Cl2, 23 ºC

[Mn]red+ +
MnO

N N
O

NtBu tBu
tButBu

acrH2 acrNH3

redox cat. acid cat. ‘BDFE’ NH3%

1 Ir(ppy)2(dtbpy)(PF6) NMe3H+ BF4
- 35 50

2 Ru(bpy)3(PF6)2 NMe3H+ BF4
- 40 57

3 Ru(bpy)3(PF6)2 PhCO2H 45 55

4 Ir(ppy)2(dtbpy)(PF6) tBuC6H4SO2NH2 46 50

5 Ru(bpy)3(PF6)2 HOAc 48 20

6 Ru(bpm)3(PF6)2 PhCO2H 55 19

7 Ru(bpm)3(PF6)2
tBuC6H4SO2NH2 59 24

8 - - - 15

Wang, Knowles, Chirik unpublished
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Proposed Mechanism for Ammonia Synthesis
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RuI acrH2
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RuII

NMe3

acrH2

RuII

NMe3

acrH+
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proton-coupled
electron transfer
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MnVN MnIVNH

electron
transfer
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MnIIINH2
acrH2

acr

H-atom
transfer

proton
transfer

PCET
(Ru + H+)

or HAT
(acrH2)

MnIINH3
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(w/ Rob Knowles)
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Comparison of Catalyst Pairs with Varied BDFEs (in THF)
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N
H

acrH2

N
acr

redox cat. acid cat. ‘BDFE’ NH3%

1 Ir(ppy)2(dtbpy)(PF6) NEt3HBF4 41 69

2 Ru(bpy)3(PF6)2 NEt3HBF4 45 44

3 Ir(ppy)2(dtbpy)(PF6) pCNC6H4CO2H 52 30

4 Ru(bpy)3(PF6)2 TBDH+Cl- 53 13

5 Ru(bpy)3(PF6)2 mNO2C6H4CO2H 56 3

6 Ru(bpy)3(PF6)2 PhCO2H 61 8

7 Ru(bpm)3(PF6)2 TBDH+Cl- 63 5

8 Ru(bpy)3(PF6)2
tBuC6H4SO2NH2 68 2


