Carbon Capture, Utilization and Storage (CCUS) and Negative Emission Technologies in Urban Cities

A.-H. Alissa Park
Department of Earth and Environmental Engineering
Department of Chemical Engineering
Lenfest Center for Sustainable Energy
Columbia University in the City of New York

The Earth Institute
November 6th, 2019
We need “… substantial multi-century climate change commitment created by past, present and future emissions of CO₂.” (IPCC, 2013)
Mission Innovation aims to reinvigorate and accelerate global clean energy innovation with the objective to make clean energy widely affordable.
Potential Annual Revenue (dollars)

What should we make using CO₂?

Concrete
- 2020: $10B–$60B
- 2025: $50B–$200B
- 2030: $150B–$400B

Fuels
- 2020: $1B–$5B
- 2025: $4.5B–$60B
- 2030: $10B–$250B

Aggregates
- 2020: $0.1B–$0.6B
- 2025: $0.4B–$2.5B
- 2030: $2B–$25B

Polymers
- 2020: $0.1B–$0.2B
- 2025: $0.2B–$5B
- 2030: $1B–$12B

Methanol

(CO₂ Sciences & The Global CO₂ Initiative, Nov. 2016)
Potential Reduction in CO$_2$ Emissions (tons)

What should we make using CO$_2$?

(CO$_2$ Sciences & The Global CO$_2$ Initiative, Nov. 2016)
The experiment injected 220 tonnes of carbon dioxide several hundred meters underground (J. MATTER)

https://www.or.is/en/projects/carbfix/news/carbfix-paper-science
Carbonation of industrial wastes results in reclassification of these materials as non-hazardous hence **safe for long-term carbon storage** or for **sustainable utilization**.
A.-H. Alissa Park, Director of Lenfest Center for Sustainable Energy

Sustainable Transformation of Unconventional Resources using CO₂

Carbonation of Industrial Wastes

Baotou Steel in China
500-600 metric tons of slag per year
GreenOre and Baotou Steel Joint Venture
Sustainable Construction Materials: Integrated Upcycling of Waste Materials and Carbon Sequestration (NYSERDA)

1 ton of cement leads to approx. 1 ton of CO₂ emissions. In 2015, NYS cement consumption was approx. 2.8 million metric tons. Therefore, finding an alternative material to replace cement (even partially) can help to lower CO₂ emissions.

Construction materials applied to Buildings in NYC – NSF Connected Communities

Carbon Mineralization applied to Materials distillation – WTM&E (DOE ARPA-E)

Waste concrete → New construction materials

Capture and store/utilize CO₂ from municipal solid wastes
BioEnergy with Carbon Capture and Store (BECCS): Negative Emission Technology

A.-H. Alissa Park, Director of Lenfest Center for Sustainable Energy

Alkaline Thermal Treatment of biomass with in-situ CO₂ capture

Biomass($C_nH_{2n}O_2$) + NaOH \rightarrow H₂ + Na₂CO₃

CH₄ + H₂O $\xrightarrow{\text{Ni/ZrO}_2}$ CO + 3H₂
CO + H₂O $\xrightarrow{\text{Ni/ZrO}_2}$ CO₂ + H₂
CO₂ + Ca(OH)₂ \rightarrow CaCO₃

Minerals and alkaline Industrial wastes
Recycle
Industrial use or carbon storage

Wet & Salty Seaweed

Rain + NO₃⁻ + SO₄²⁻; low pH

CO₂ Neutralized with alkaline solution
Biochar

373 K
423 K
473 K
523 K
573 K
Carbon Capture and Conversion to Chemicals and Fuels

Novel Nano-scale Hybrid Materials have unique electrolyte behaviors with high CO₂ loading capacity.

We need to develop new pathways to existing chemicals and even new pathways to new chemicals and materials.