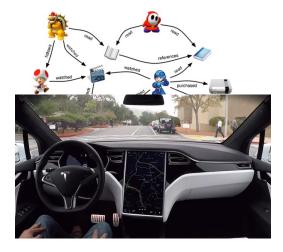
Reinforcement Learning towards Al-driven Control

Mengdi Wang Center for Statistics and Machine Learning

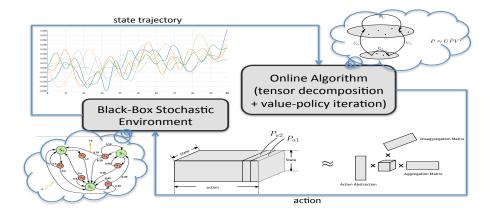


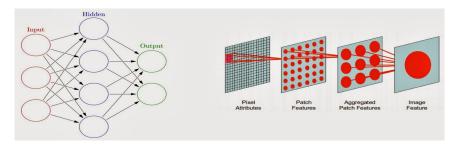
Reinforcement learning happening now

Game Al

Atari, Breakout, Poker, Battle Zone, Go, Starcraft, ...

Robots, self-driving cars, e-commerce





Core technologies for Reinforcement Learning

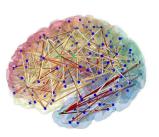
- 1. Dimension Reduction and Feature Engineering from Machine Learning
- 2. Deep Policy Network and Deep Value Network
- 3. Fast training, asynchronous parallel computation
- 4. Real-time data collection and live experiment
- 5. CV+NLP+Sensing+Attention Networks
- 6. State representation learning from high-dimensional data

Brief History of Al

Control (1950-1990)

Feedback control for known physical systems

Applications: robotics, automation, aeroengineering

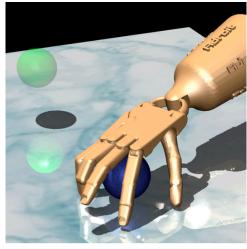

Machine Learning and Data Science (1990 – 2010s

Find static mapping relations from big data

Applications: image recognition, natural language

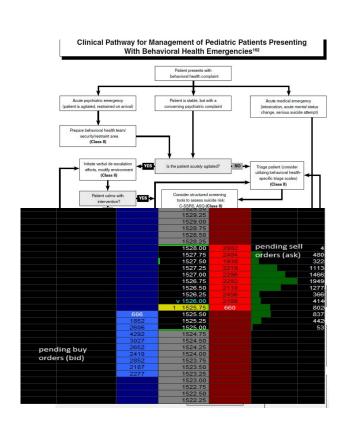
processing, translation, knowledge graph. Bavesian

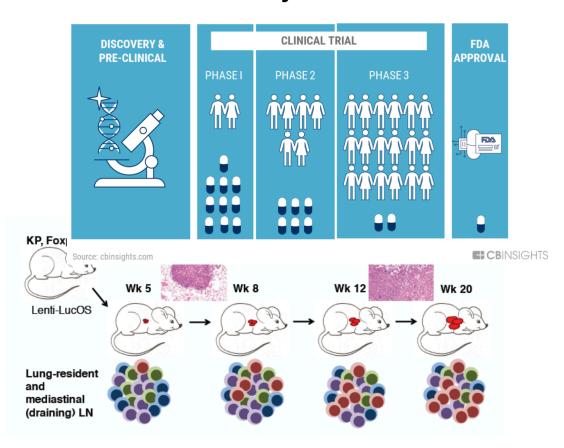
random fields


What's next - Deep Reinforcement Learning - Learn to control in unknown dynamical environment

How efficient is RL now?

- still heavily relying on simulation and brute force

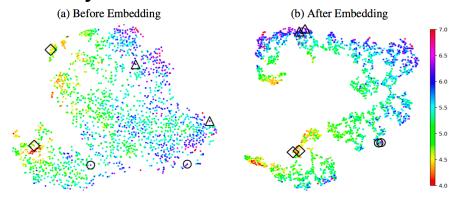

Game AI means infinite data AI Training time: \sim 2 GPU hrs


What it means for human: 32 days

What Al Training time means for human: XXXX years

Lack of generalizability \ sample inefficiency

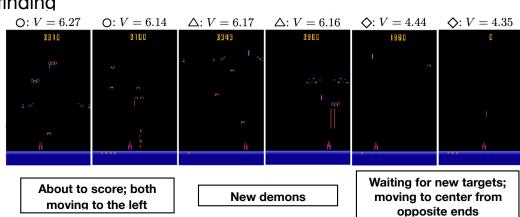
What if the data/trial is limited and costly



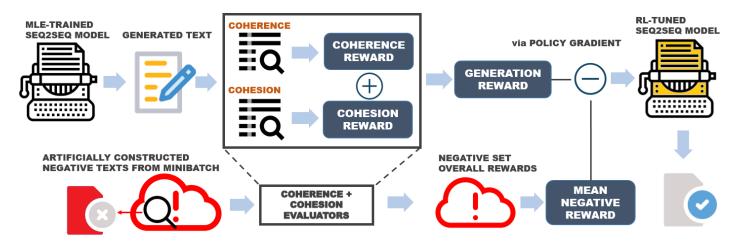
Improve RL efficiency and generalizability

Acceleration and efficiency improvement

 For an100-step planning problem, our algorithms improve sample efficiency by 100,000,000 time (NeurIPS 17, 18, ICML)



Improve generazability


 Dimension reductio in "phase" space - finding latent logic of complex games

Imitation Reinforcement Learning

 Learn from human experts and learn faster (ICML 19)

RL for Writing Long-Form Text

Human evaluations via Amazon Mechanical Turk:

Cohesion	Coherence
Human judges preferred:	Human judges preferred:
Our Method Neutral Comparison	Our Method Neutral Comparison
G _{MLE+RL} 36.41% 33.57% 30.50% G _{MLE} G _{MLE+RL} 29.91% 30.85% 39.24% Human	$G_{\text{MLE+RL}}$ 37.23% 31.44% 31.80% G_{MLE} $G_{\text{MLE+RL}}$ 28.96% 31.32% 39.72% Human

RL for Quantitative Trading

RL in HFT and Monetization

Use reinforcement learning to adapt trading strategies

Why RL?

Market impact cannot be predicted. Backtesting doesn't work

Solution:

· Learning-while-doing, inverse reinforcement learning

Deep RL for Dynamic Portfolio Optimization

• Classical finance model does not capture dynamic market movements

Why RL?

Collect data online and adapt strategies

Solution:

• Deep recurrent neural networks for predicting market movements

Thank you!

Mengdi Wang's Group

Group Members: Lin Yang, Saeed Ghadimi, Yichen Chen, Galen Cho, Yaqi Duan, Hao Gong, Zheng Yu, Hao Lu, Zachary Moore

Center for Statistics and Machine Learning

Department of Operations Research and Financial

Engineering

Department of Computer Science
Princeton University
Princeton, NJ, USA 08540

