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Sizing up the challenge
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CLEAN ELECTRICITY: THE LINCHPIN FOR A NET-ZERO ECONOMY
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Data source: Larson et al. (2020), Net-Zero America: Potential Pathways, Infrastructure, and Impacts, interim
report, Princeton University, Princeton, NJ, December 15, 2020.



ELECTRIFICATION CHANGES PATTERNS OF DEMAND SIGNIFICANTLY
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Data source: Xu et al. (2022), “New Jersey’s Pathway to 100% Carbon-Free Electricity,” Princeton University, Princeton, NJ, March 2022. https://zenodo.org/record/6386823#.Yrmo7BPMI-Q 6



THE GOOD NEWS: WIND, SOLAR, BATTERY COSTS PLUMMET...

Total cost declines (2010-2021)
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Data Sources: Wind & solar costs from Lazard (2021), Lazard’s Levelized Cost of Energy Analysis — Version 15.0.
Battery pack costs from Bloomberg New Energy Finance (2021), Battery Price Survey.



..AND ARE NOW CHEAPER THAN NEW FOSSIL GENERATION
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So we're done, right?
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Data Source: Wind & solar costs from Lazard (2021), Lazard’s Levelized Cost of Energy Analysis — Version 15.0.
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KEY MECHANISMS: DECLINING “FUEL SAVING” VALUE (ENERGY VALUE)
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Source: J. Rhodes et al. 2017, “Are solar and wind really killing coal, nuclear and grid reliability?”
https://theconversation.com/are-solar-and-wind-really-killing-coal-nuclear-and-grid-reliability-76 741 12



KEY MECHANISMS: DECLINING CAPACITY VALUE

Figure 8.1 ERCOT Net Load for a Typical Summer Day at Different Levels
of Solar PV Penetration
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Source: Schmalensee et al. 2015, The Future of Solar Energy, Massachusetts Institute of Technology, https://energy.mit.edu/research/future-solar-energy/
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WIND/SOLAR VALUE DECLINE: OVERGENERATION

Monthly curtailments by the California Independent System Operator (Jan 2015-Jun 2021) -
thousand megawatthours cia)
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Source: Graph by the U.S. Energy Information Administration, based on data from the California Independent System
Operatort? (CAISO)

Source: U.S. EIA, 2021, “California’s curtailments of solar electricity generation continue to increase,” Today in Energy, August 24, 2021,

https://www.eia.gov/todayinenergy/detail.php?id=49276 14



A RACE AGAINST DECLINING VALUE: ENERGY STORAGE

CO, Emissions Rate Limit (g/kWh)
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Graphic is author’s own created with data from: de Sisternes, Jenkins & Botterud (2016), “The value of energy storage in decarbonizing the
electricity sector,” Applied Energy 175: 368-379. Assumes Li-ion storage system with 2 hours storage duration and 10 year asset life. Estimated
2019 Li-ion storage cost per kWh from Lazard (2019), Lazard’s Levelized Cost of Storage Analysis — Version 5.0 for 100 MW / 200 MWh system. 15



STORAGE VALUE DECLINE: KEY MECHANISMS

1. Increasing energy storage (longer 2. Reduced energy arbitrage
duration) needed to maintain capacity (buy-sell) spread
substitution value

MW MW Decrease in
demand

Peak duration Hour

Source: Bloomberg New Energy Finance (2017) https://twitter.com/vsiv/status/875433676351340544/photo/1

See also: Mallapragada, Sepulveda & Jenkins (2020), “Long-run system value of battery energy

storage in future grids with increasing wind and solar generation,” Applied Energy 275(1).
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SOLAR AND WIND (AND BATTERIES) WILL BE STARS...
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Solar, wind & batteries will be stars...
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..BUT WE NEED TO COMPLETE THE TEAM
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CLEAN FIRM RESOURCES ARE CRITICAL
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Fully decarbonizing electricity requires

firm low-carbon substitutes for natural gas
and retiring nuclear units




SEVERAL CLEAN FIRM OPTIONS, ALL WORK TO GET THE JOB DONE

Modeled T00% carbon-free electricity system costs for California

with clean firm:
21-53% cheaper no clean firm

m RESOLVE W urbs GenX

System Costs [cents/kWh]
0 0]
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Wind, solar, storage... + Nuclear + CCS + Zero-carbon + all clean Wind, solar, storage only
Fuel firm options

Source: Baik et al. (2021), “What’s different about different net-zero carbon electricity systems?” Energy & Climate Change,
https://www.sciencedirect.com/science/article/pii/S2666278721000234 22




MULTIPLE CLEAN FIRM RESOURCES CAN CO-EXIST

“Firm Cyclers” Intermediate “Flexible Base”
H, or biogas turbines or Natural gas w/CCS Nuclear
Gas turbines + negative Allam cycle Sec?thirmal
usion’

emissions offsets

—

* Low fixed cost * High fixed cost

e High variable/fuel cost * Low variable/fuel cost
e Offline majority of time * Online majority of time
* Many start-ups * Fewer start-ups

* Integrated storage or
co-products can add value

See also: Sepulveda, N., Jenkins, J.D., et al. (2018), “The role of firm low-carbon resources

In deep decarbonization of electric power systems,” Joule 2(11).
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The Dunkelflaute ("Dark Doldrums”)
Western Interconnection, Renewables + Storage Only
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Data source: Unpublished results, Jesse D. Jenkins, GenX model, Western Interconnection.
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Long Duration Storage Needed for Renewables + Storage Only
Western Interconnection, O CO, emissions limit
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Data source: Unpublished results, Jesse D. Jenkins, GenX model, Western Interconnection.



Long Duration Storage Needed

Western Interconnection, Renewables + Storage Only
(24 hour rolling average power)
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Data source: Unpublished results, Jesse D. Jenkins, GenX model, Western Interconnection.



A Very different kKind of storage!

ENERGY STORAGE

Long Duration Breakthrough? Form Energy’s First
Project Tries Pushing Storage to 150 Hours

Minnesota utility Great River Energy will use new storage technology from the Bill Gates-backed startup
to replace coal power with dispatchable wind.

JULIAN SPECTOR | MAY 07, 2020

ENERGY STORAGE

Utah Aims to Shatter Records With 1,000MW
Energy Storage Plant

The one-of-a-kind facility would combine compressed air storage in salt caverns with hydrogen storage,
large flow batteries and solid-oxide fuel cells.

JULIAN SPECTOR | MAY 30, 2019
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The winning team
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NO ROAD TO NET-ZERO WITHOUT INFRASTRUCTURE BUILD-OUT

a. Least constrained (E+)

b
3.1x

0.9 Gt/y
A A

/

Note: On a volume
basis (at reservoir
pressure), CO, flow
in 2050 is 1.3X
current U.S. oil
production and V4 of
current oil + gas
production.

1.5 TW solar

Source: Jenkins et al. (2021), “Mission Net-Zero: The nation-building path to a prosperous, net-zero emissions economy,” Joule, 5(11)
https://www.cell.com/joule/fulltext/52542-4351(21)00493-1 3




NO ROAD TO NET-ZERO WITHOUT INFRASTRUCTURE BUILD-OUT

b. 100% renewables (RE+)
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Source: Jenkins et al. (2021), “Mission Net-Zero: The nation-building path to a prosperous, net-zero emissions economy,” Joule, 5(11)
https://www.cell.com/joule/fulltext/S2542-4351(21)00493-1 32




NO ROAD TO NET-ZERO WITHOUT INFRASTRUCTURE BUILD-OUT

Note: On a volume basis CO, flow in 2050 is 2.5x

c. Constrained renewables (RE-) current U.S. oil production and nearly V2 of
current oil + gas production.
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Source: Jenkins et al. (2021), “Mission Net-Zero: The nation-building path to a prosperous, net-zero emissions economy,” Joule, 5(11)
https://www.cell.com/joule/fulltext/S2542-4351(21)00493-1 33




TRADE-OFFS VARY ACROSS PATHWAYS, CHALLENGES IN ALL

Level of Challenge
(ordinal ranking)
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